Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1239101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876913

RESUMO

Heme oxygenase (HO) has been shown to control various cellular processes in both mammals and Drosophila melanogaster. Here, we investigated how changes in HO levels in neurons and glial cells during development affect adult flies, by using the TARGET Drosophila system to manipulate the expression of the ho gene. The obtained data showed differences in adult survival, maximum lifespan, climbing, locomotor activity, and sleep, which depended on the level of HO (after ho up-regulation or downregulation), the timing of expression (chronic or at specific developmental stages), cell types (neurons or glia), sex (males or females), and age of flies. In addition to ho, the effects of changing the mRNA level of the Drosophila CNC factor gene (NRF2 homolog in mammals and master regulator of HO), were also examined to compare with those observed after changing ho expression. We showed that HO levels in neurons and glia must be maintained at an appropriate physiological level during development to ensure the well-being of adults. We also found that the downregulation of ho in either neurons or glia in the brain is compensated by ho expressed in the retina.

2.
Curr Issues Mol Biol ; 44(3): 1169-1181, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35723299

RESUMO

Antimicrobial peptides (AMPs) are important components of innate immunity. Here, we report the antimicrobial properties of a peptide derived from the Male fertility factor kl2 (MFF-kl2) protein of Drosophila melanogaster, which was identified as a functional analog of the mammalian antibacterial chemerin-p4 peptide. The antimicrobial activity of multifunctional chemerin is mainly associated with a domain localized in the middle of the chemerin sequence, Val66-Pro85 peptide (chemerin-p4). Using bioinformatic tools, we found homologs of the chemerin-p4 peptide in the proteome of D. melanogaster. One of them is MFF-p1, which is a part of the MFF kl2 protein, encoded by the gene male fertility factor kl2 (kl-2) located on the long arm of the Y chromosome. The second detected peptide (Z-p1) is a part of the Zizimin protein belonging to DOCK family, which is involved in cellular signaling processes. After testing the antimicrobial properties of both peptides, we found that only MFF-p1 possesses these properties. Here, we demonstrate its antimicrobial potential both in vitro and in vivo after infecting D. melanogaster with bacteria. MFF-p1 strongly inhibits the viable counts of E. coli and B. subtilis after 2 h of treatment and disrupts bacterial cells. The expression of kl-2 is regulated by exposure to bacteria and by the circadian clock.

3.
J Pineal Res ; 70(3): e12728, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33650175

RESUMO

Melanoma is a leading cause of cancer deaths worldwide. Although immunotherapy has revolutionized the treatment for some patients, resistance towards therapy and unwanted side effects remain a problem for numerous individuals. Broad anti-cancer activities of melatonin are recognized; however, additional investigations still need to be elucidated. Herein, using various human melanoma cell models, we explore in vitro the new insights into the regulation of melanoma by melatonin and its metabolites which possess, on the other side, high safety profiles and biological meaningful. In this study, using melanotic (MNT-1) and amelanotic (A375, G361, Sk-Mel-28) melanoma cell lines, the comparative oncostatic responses, the impact on melanin content (for melanotic MNT-1 melanoma cells) as well as the mitochondrial function controlled by melatonin, its precursor (serotonin), a kynuric (N1 -acetyl-N2 -formyl-5-methoxykynuramine, AFMK) and indolic pathway (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) metabolites were assessed. Namely, significant disturbances were observed in bioenergetics as follows: (i) uncoupling of oxidative phosphorylation (OXPHOS), (ii) attenuation of glycolysis, (iii) dissipation of mitochondrial transmembrane potential (mtΔΨ) accompanied by (iv) massive generation of reactive oxygen species (ROS), and (v) decrease of glucose uptake. Collectively, these results together with previously published reports provide a new biological potential and make an imperative to consider using melatonin or its metabolites for complementary future treatments of melanoma-affected patients; however, these associations should be additionally investigated in clinical setting.


Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/metabolismo , Biotransformação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Melanoma/patologia , Melatonina/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
4.
Front Immunol ; 12: 737231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095834

RESUMO

Eosinophils and secretory leukocyte protease inhibitor (SLPI) are both associated with Th2 immune responses and allergic diseases, but whether the fact that they are both implicated in these conditions is pathophysiologically related remains unknown. Here we demonstrate that human eosinophils derived from normal individuals are one of the major sources of SLPI among circulating leukocytes. SLPI was found to be stored in the crystalline core of eosinophil granules, and its dislocation/rearrangement in the crystalline core likely resulted in changes in immunostaining for SLPI in these cells. High levels of SLPI were also detected in blood eosinophils from patients with allergy-associated diseases marked by eosinophilia. These include individuals with eosinophilic granulomatosis with polyangiitis (EGPA) and atopic dermatitis (AD), who were also found to have elevated SLPI levels in their plasma. In addition to the circulating eosinophils, diseased skin of AD patients also contained SLPI-positive eosinophils. Exogenous, recombinant SLPI increased numbers of migratory eosinophils and supported their chemotactic response to CCL11, one of the key chemokines that regulate eosinophil migratory cues. Together, these findings suggest a role for SLPI in controlling Th2 pathophysiologic processes via its impact on and/or from eosinophils.


Assuntos
Eosinófilos/imunologia , Granulomatose com Poliangiite/imunologia , Leucócitos/imunologia , Inibidor Secretado de Peptidases Leucocitárias/imunologia , Adulto , Movimento Celular/imunologia , Dermatite Atópica/imunologia , Feminino , Humanos , Contagem de Leucócitos/métodos , Masculino , Pessoa de Meia-Idade
5.
Exp Dermatol ; 30(10): 1418-1427, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33131146

RESUMO

Antimicrobial peptides (AMPs) are important components of the innate immune system and are involved in skin protection against environmental insults and in wound healing. Herein, we assessed the gene expression of chemerin (Rarres2), cathelicidin CRAMP (Camp), and three ß-defensins (Defb1, Defb3, and Defb14) in mouse skin during light/dark cycle (LD 12:12) and constant darkness (DD). Next, we examined the survival of bacteria applied on the skin at specific times during the day. We found that the expression of Rarres2, Camp, and Defb1 was the highest at 4 h after the beginning of darkness, during high activity of mice. These rhythms, however, were not maintained under DD in the skin but were present in the liver. This indicated that in the case of skin, a circadian input was masked by daily changes of light in the environment. In contrast, Defb3 and Defb14 showed the highest mRNA levels when the mice slept, and these rhythmic mRNA oscillations were maintained under DD. This shows that Rarres2, Camp, and Defb1 levels in the skin are correlated with high locomotor activity in mice and they are controlled by daily changes of light and dark. Alternatively, oscillations in the mRNA levels of Defb3 and Defb14 seem to protect skin and heal wounds during sleep. These rhythms are maintained under DD, indicating that they are regulated by a circadian clock. Our study suggests that daily AMP expression affects the survival of bacteria on the surface of skin, which depends on the phase of AMP cycling.


Assuntos
Peptídeos Antimicrobianos/genética , Ritmo Circadiano/genética , Pele/microbiologia , Animais , Escuridão , Modelos Animais de Doenças , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Front Microbiol ; 11: 1819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849424

RESUMO

Chronic inflammatory skin diseases like psoriasis alter the local skin microbiome and lead to complications such as persistent infection with opportunistic/pathogenic bacteria. Disease-associated changes in microbiota may be due to downregulation of epidermal antimicrobial proteins/peptides, such as antimicrobial protein chemerin. Here, we show that chemerin and its bioactive derivatives have differential effects on the viability of different genera of cutaneous bacteria. The lethal effects of chemerin are enhanced by bacterial-derived ROS-induced chemerin peptide oxidation and suppressed by stationary phase sigma factor RpoS. Insight into the mechanisms underlying changes in the composition of cutaneous bacteria during autoreactive skin disease may provide novel ways to mobilize chemerin and its peptide derivatives for maximum antimicrobial efficacy.

7.
J Pineal Res ; 67(4): e12610, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31532834

RESUMO

Melanogenesis is a key parameter of differentiation in melanocytes and melanoma cells; therefore, search for factors regulating this pathway are strongly desired. Herein, we investigated the effects of melatonin, a ubiquitous physiological mediator that is found throughout animals and plants. In mammals, the pineal gland secretes this indoleamine into the blood circulation to exert an extensive repertoire of biological activities. Our in vitro assessment indicates an oncostatic capacity of melatonin in time-dependent manner (24, 48, 72 hours) in highly pigmented MNT-1 melanoma cells. The similar pattern of regulation regarding cell viability was observed in amelanotic Sk-Mel-28 cells. Subsequently, MNT-1 cells were tested for the first time for evaluation of melanin/melatonin interaction. Thus primary, electron paramagnetic resonance (EPR) spectroscopy demonstrated that melatonin reduced melanin content. Artificially induced disturbances of melanogenesis by selected inhibitors (N-phenylthiourea or kojic acid) were slightly antagonized by melatonin. Additionally, analysis using transmission electron microscopy has shown that melatonin, particularly at higher dose of 10-3  mol/L, triggered the appearance of premelanosomes (stage I-II of melanosome) and MNT-1 cells synthesize de novo endogenous melatonin shown by LC-MS. In conclusion, these studies show a melanogenic-like function of melatonin suggesting it as an advantageous agent for treatment of pigmentary disorders.


Assuntos
Melaninas/biossíntese , Melanoma/metabolismo , Melatonina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Transtornos da Pigmentação/tratamento farmacológico , Transtornos da Pigmentação/metabolismo , Transtornos da Pigmentação/patologia
8.
J Biol Chem ; 294(4): 1267-1278, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30504221

RESUMO

Chemerin is a leukocyte attractant, adipokine, and antimicrobial protein abundantly produced in the skin epidermis. Despite the fact that most of the bactericidal activity present in human skin exudates is chemerin-dependent, just how chemerin shapes skin defenses remains obscure. Here we demonstrate that p4, a potent antimicrobial human chemerin peptide derivative, displays killing activity against pathogenic methicillin-resistant Staphylococcus aureus strains and suppresses microbial growth in a topical skin infection model. Mechanistically, we show that p4 homodimerization is required for maximal bactericidal activity and that an oxidative environment, such as at the skin surface, facilitates p4 disulfide bridge formation, required for the dimerization. p4 led to rapid damage of the bacterial internal membrane and inhibited the interaction between the membranous cytochrome bc1 complex and its redox partner, cytochrome c These results suggest that a chemerin p4-based defense strategy combats bacterial challenges at the skin surface.


Assuntos
Antibacterianos/farmacologia , Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oligopeptídeos/farmacologia , Dermatopatias Bacterianas/tratamento farmacológico , Pele/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Pele/metabolismo , Pele/microbiologia , Dermatopatias Bacterianas/metabolismo , Dermatopatias Bacterianas/microbiologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia
9.
Genes (Basel) ; 10(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30583479

RESUMO

The daily expression of genes and the changes in gene expression after silencing the heme oxygenase (ho) gene were examined in the retina of Drosophila using microarray and SybrGreen qPCR (quantitative polymerase chain reaction) methods. The HO decrease in the morning upregulated 83 genes and downregulated 57 genes. At night, 80 genes were upregulated and 22 were downregulated. The top 20 genes downregulated after ho silencing in the morning modulate phototransduction, immune responses, autophagy, phagocytosis, apoptosis, the carbon monoxide (CO) response, the oxidative stress/UV response, and translation. In turn, the genes that upregulated at night were involved in translation-the response to oxidative stress, DNA damage, and phototransduction. Among the top 20 genes downregulated at night were genes involved in phototransduction, immune responses, and autophagy. For some genes, a low level of HO had an opposite effect in the morning compared to those at night. Silencing ho also changed the expression of circadian clock genes, while the HO decrease during the night enhanced the expression of immune system genes. The results showed that the cyclic expression of HO is important for controlling several processes in the retina, including neuroprotection and those involved in the innate immune system.

10.
Int J Mol Sci ; 19(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487387

RESUMO

Melatonin (Mel) is the major biologically active molecule secreted by the pineal gland. Mel and its metabolites, 6-hydroxymelatonin (6(OH)Mel) and 5-methoxytryptamine (5-MT), possess a variety of functions, including the scavenging of free radicals and the induction of protective or reparative mechanisms in the cell. Their amphiphilic character allows them to cross cellular membranes and reach subcellular organelles, including the mitochondria. Herein, the action of Mel, 6(OH)Mel, and 5-MT in human MNT-1 melanoma cells against ultraviolet B (UVB) radiation was investigated. The dose of 50 mJ/cm² caused a significant reduction of cell viability up to 48%, while investigated compounds counteracted this deleterious effect. UVB exposure increased catalase activity and led to a simultaneous Ca++ influx (16%), while tested compounds prevented these disturbances. Additional analysis focused on mitochondrial respiration performed in isolated mitochondria from the liver of BALB/cJ mice where Mel, 6(OH)Mel, and 5-MT significantly enhanced the oxidative phosphorylation at the dose of 10-6 M with lower effects seen at 10-9 or 10-4 M. In conclusion, Mel, 6(OH)Mel and 5-MT protect MNT-1 cells, which express melatonin receptors (MT1 and MT2) against UVB-induced oxidative stress and mitochondrial dysfunction, including the uncoupling of oxidative phosphorylation.


Assuntos
Melanoma/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , 5-Metoxitriptamina/farmacologia , Animais , Cálcio/metabolismo , Catalase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos da radiação , Melatonina/análogos & derivados , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Fosforilação Oxidativa/efeitos dos fármacos , Fosforilação Oxidativa/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...