Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Can J Microbiol ; 63(8): 671-681, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28414922

RESUMO

In vitro characterization of 3 LAGLIDADG-type homing endonucleases (HEs) (I-CcaI, I-CcaII, and I-AstI) that belong to the I-OnuI family showed that they are functional HEs that cleave their respective cognate target sites. These endonucleases are encoded within group ID introns and appear to be orthologues that have inserted into 3 different mitochondrial genes: rns, rnl, and cox3. The endonuclease activity of I-CcaI was tested using various substrates, and its minimum DNA recognition sequence was estimated to be 26 nt. This set of HEs may provide some insight into how these types of mobile elements can migrate into new locations. This study provides additional endonucleases that can be added to the catalog of currently available HEs that may have various biotechnology applications.


Assuntos
Endonucleases/genética , Ascomicetos/enzimologia , Ascomicetos/genética , Sequência de Bases , DNA Fúngico , Endonucleases/classificação , Íntrons , Xylariales/enzimologia , Xylariales/genética
2.
Springerplus ; 5(1): 1408, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610327

RESUMO

BACKGROUND: Based on previous studies, it was suspected that the mitochondrial rns gene within the Ophiostomatales is rich in introns. This study focused on a collection of strains representing Ophiostoma piliferum, Ophiostoma pluriannulatum and related species that cause blue-stain; these fungi colonize the sapwood of trees and impart a dark stain. This reduces the value of the lumber. The goal was to examine the mtDNA rns intron landscape for these important blue stain fungi in order to facilitate future annotation of mitochondrial genomes (mtDNA) and to potentially identify mtDNA introns that can encode homing endonucleases which may have applications in biotechnology. RESULTS: Comparative sequence analysis identified five intron insertion sites among the ophiostomatoid fungi examined. Positions mS379 and mS952 harbor group II introns, the mS379 intron encodes a reverse transcriptase, and the mS952 intron encodes a potential homing endonuclease. Positions mS569, mS1224, and mS1247 have group I introns inserted and these encode intact or eroded homing endonuclease open reading frames (ORF). Phylogenetic analysis of the intron ORFs showed that they can be found in the same insertion site in closely and distantly related species. CONCLUSIONS: Based on the molecular markers examined (rDNA internal transcribed spacers and rns introns), strains representing O. pilifera, O. pluriannulatum and Ophiostoma novae-zelandiae could not be resolved. Phylogenetic studies suggest that introns are gained and lost and that horizontal transfer could explain the presence of related intron in distantly related fungi. With regard to the mS379 group II intron, this study shows that mitochondrial group II introns and their reverse transcriptases may also follow the life cycle previously proposed for group I introns and their homing endonucleases. This consists of intron invasion, decay of intron ORF, loss of intron, and possible reinvasion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...