Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 101(3): e02942, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31778204

RESUMO

Future climate change is leading to the redistribution of life on Earth as species struggle to cope with rising temperatures. Local adaptation allows species to become locally optimized and persist despite environmental selection, but the extent to which this occurs in nature may be limited by dispersal and gene flow. Congeneric marine gastropod species (Littorina littorea and L. saxatilis) with markedly different developmental modes were collected from across a latitudinal thermal gradient to explore the prevalence of local adaptation to temperature. The acute response of metabolic rate (using oxygen consumption as a proxy) to up-ramping and down-ramping temperature regimes between 6°C and 36°C was quantified for five populations of each species. The highly dispersive L. littorea exhibited minimal evidence of local adaptation to the thermal gradient, with no change in thermal optimum (Topt ) or thermal breadth (Tbr ) and a decline in maximal performance (max ) with increasing latitude. In contrast, the direct developing L. saxatilis displayed evidence of local optimization, although these varied idiosyncratically with latitude, suggesting a suite of selective pressures may be involved in shaping thermal physiology in this relatively sedentary species. Our results show that the biogeography of thermal traits can differ significantly between related species, and show that interpopulation differences in thermal performance do not necessarily follow simple patterns that may be predicted based on latitudinal changes in environmental temperatures. Further research is clearly required to understand the mechanisms that can lead to the emergence of local adaptation in marine systems better and allow improved predictions of species redistribution in response to climate change.


Assuntos
Aclimatação , Adaptação Fisiológica , Mudança Climática , Fenótipo , Temperatura
2.
J Insect Physiol ; 106(Pt 3): 163-171, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29278714

RESUMO

In the face of global warming, both the absolute thermal tolerance of an ectotherm, and its ability to shift its tolerance level via acclimation, are thought to be fundamentally important. Understanding the links between tolerance and its plasticity is therefore critical to accurately predict vulnerability to warming. Previous studies in a number of ectotherm taxa suggest trade-offs in the evolution of thermal tolerance and its plasticity, something which does not, however, apply to Deronectes diving beetles, where these traits are instead positively correlated. Here we revisit the relationship between thermal tolerance and plasticity in these beetles, paying attention to a recently discovered morphological adaptation supporting under water respiration - setal tracheal gills. Hollow setae on the elytra interconnect with the beetle's tracheal system, providing a gas exchange surface that allows oxygen to be extracted directly from the water. This enables individuals to stay submerged for longer than their subelytral air stores would allow. We show that hypoxia reduced heat tolerance, especially when individuals were denied access to air, forcing them to rely solely on aquatic gas exchange. Species with higher densities of these gas-exchanging setae exhibited improved cold tolerance, but reduced heat tolerance and lower plasticity of heat tolerance. Differences in setal tracheal gill density across species were also related to habitat use: species with low gill density were found mainly in intermittent, warmer rivers, where underwater gas exchange is more problematic and risks of surfacing may be smaller. Moreover, when controlling for differences in gill density we no longer found a significant relationship between heat tolerance and its plasticity, suggesting that the previously reported positive relationship between these variables may be driven by differences in gill density. Differences in environmental conditions between the preferred habitats could simultaneously select for characteristic differences in both thermal tolerance and gill density. Such simultaneous selection may have resulted in a non-causal association between cold tolerance and gill density. For heat tolerance, the correlations with gill density could reflect a causal relationship. Species relying strongly on diffusive oxygen uptake via setal tracheal gills may have a reduced oxygen supply capacity and may be left with fewer options for matching oxygen uptake to oxygen demand during acclimation, which could explain their reduced heat tolerance and limited plasticity. Our study helps shed light on the mechanisms that underpin thermal tolerance and plasticity in diving air-breathing ectotherms, and explores how differences in thermal tolerance across species are linked to their selected habitat, morphological adaptations and evolutionary history.


Assuntos
Besouros/fisiologia , Oxigênio/fisiologia , Termotolerância , Animais , Besouros/anatomia & histologia , Ecossistema , Brânquias/anatomia & histologia
3.
J Insect Physiol ; 98: 59-66, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27915134

RESUMO

Ongoing climate change is driving dramatic range shifts in diverse taxa worldwide, and species responses to global change are likely to be determined largely by population responses at geographical range margins. Here we investigate the metabolic and reproductive plasticity in response to water temperature and salinity variation of two populations of the eurythermic saline water bug Sigara selecta: one population located close to the northern edge of its distribution, in a relatively cold, thermally stable region (SE England - 'marginal'), and one close to the range centre, in a warmer and more thermally variable Mediterranean climate (SE Spain - 'core'). We compared metabolic and oviposition rates and egg size, following exposure to one of four different combinations of temperature (15 and 25°C) and salinity (10 and 35gL-1). Oviposition rate was significantly higher in the marginal population, although eggs laid were smaller overall. No significant differences in oxygen consumption rates were found between core and marginal populations, although the marginal population showed higher levels of plasticity in both metabolic and reproductive traits. Our results suggest that population-specific responses to environmental change are complex and may be mediated by differences in phenotypic plasticity. In S. selecta, the higher plasticity of the marginal population may facilitate both its persistence in current habitats and northward expansion with future climatic warming. The less plastic core population may be able to buffer current environmental variability with minor changes in metabolism and fecundity, but could be prone to extinction if temperature and salinity changes exceed physiological tolerance limits in the future.


Assuntos
Metabolismo Energético , Heterópteros/fisiologia , Oviposição , Termotolerância , Animais , Ecossistema , Europa (Continente) , Óvulo/fisiologia , Águas Salinas/análise , Espanha
4.
J Evol Biol ; 25(2): 329-41, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22151892

RESUMO

Surfacing behaviour is fundamental in the ecology of aquatic air-breathing organisms; however, it is only in vertebrates that the evolutionary ecology of diving has been well characterized. Here, we explore the diving behaviour of dytiscid beetles, a key group of surface-exchanging freshwater invertebrates, by comparing the dive responses of 25 taxa (Deronectes and Ilybius spp.) acclimated at two temperatures. The allometric slopes of dive responses in these dytiscids appear similar to those of vertebrate ectotherms, supporting the notion that metabolic mode shapes the evolution of diving performance. In both genera, beetles spend more time submerged than on the surface, and surface time does not vary with the temperature of acclimation. However, presumably in order to meet increased oxygen demand at higher temperatures, Deronectes species increase surfacing frequency, whereas Ilybius species decrease dive time, an example of 'multiple solutions.' Finally, widespread northern species appear to possess higher diving performances than their geographically restricted southern relatives, something which may have contributed to their range expansion ability.


Assuntos
Besouros/fisiologia , Mergulho , Animais , Comportamento Animal , Evolução Biológica , Besouros/metabolismo , Filogenia , Temperatura
5.
Mol Ecol ; 12(1): 153-67, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12492885

RESUMO

The phylogeny and population history of Meladema diving beetles (Coleoptera, Dytiscidae) were examined using mitochondrial DNA sequence from 16S ribosomal RNA and cytochrome oxidase I genes in 51 individuals from 22 populations of the three extant species (M. imbricata endemic to the western Canary Islands, M. lanio endemic to Madeira and M. coriacea widespread in the Western Mediterranean and on the western Canaries), using a combination of phylogenetic and nested clade analyses. Four main lineages are observed within Meladema, representing the three recognized species plus Corsican populations of M. coriacea. Phylogenetic analyses demonstrate the sister relationship of the two Atlantic Island taxa, and suggest the possible paraphyly of M. coriacea. A molecular clock approach reveals that speciation within the genus occurred in the Early Pleistocene, indicating that the Atlantic Island endemics are not Tertiary relict taxa as had been proposed previously. Our results point to past population bottlenecks in all four lineages, with recent (Late-Middle Pleistocene) range expansion in non-Corsican M. coriacea and M. imbricata. Within the Canary Islands, M. imbricata seems to have independently colonized La Gomera and La Palma from Tenerife (although a colonization of La Palma from La Gomera cannot be discarded), and M. coriacea has independently colonized Tenerife and Gran Canaria from separate mainland lineages. In the Mediterranean basin this species apparently colonized Corsica on a single occasion, relatively early in its evolutionary history (Early Pleistocene), and has colonized Mallorca recently on multiple occasions. On the only island where M. coriacea and M. imbricata are broadly sympatric (Tenerife), we report evidence of bidirectional hybridization between the two species.


Assuntos
Evolução Biológica , Besouros/classificação , Besouros/genética , DNA Mitocondrial/análise , Animais , Ilhas Atlânticas , Besouros/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Genética Populacional , Funções Verossimilhança , Região do Mediterrâneo , Filogenia , Portugal , RNA Ribossômico 16S/genética
6.
Heredity (Edinb) ; 86(Pt 3): 370-7, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11488974

RESUMO

Population genetic structure of the circum-Mediterranean caddisfly Mesophylax aspersus (Trichoptera, Limnephilidae) on the Canary Islands was investigated by studying allozyme variation at nine putative loci in five populations. Genetic variability, population structure and gene flow were compared with data in the literature for continental taxa to assess the effect of isolation of island populations on the genetic structure. Larvae were collected from streams on the islands of Tenerife (one population), La Gomera (two populations in the same catchment) and La Palma (two populations in different catchments). Genetic variability within populations was high relative to that recorded previously for continental Trichoptera, e.g. mean heterozygosity was 0.119--0.336 (0.035--0.15 in continental taxa). Highly significant population structuring was observed (mean F(ST)=0.250), and there was significant within-population structuring (mean F(IS)=0.098). Populations from the same catchment or island were no more similar than populations from different islands, which suggests that occasional long-distance dispersal, both between and within islands, is the predominant influence on the population structure. This dispersal ability has contributed to the colonization of most permanent streams on the Canary Islands by M. aspersus.


Assuntos
Variação Genética , Insetos/genética , Alelos , Animais , Ilhas Atlânticas , Genética Populacional , Geografia , Heterozigoto , Insetos/enzimologia , Isoenzimas/genética , Polimorfismo Genético , Dinâmica Populacional
7.
Proc Biol Sci ; 265(1402): 1219-26, 1998 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-9699314

RESUMO

There is a general perception that central and northern Europe were colonized by range expansion from Mediterranean refugia at the end of the last glaciation. Data from various species support this scenario, but we question its universality. Our mitochondrial DNA studies on three widespread species of small mammal suggest that colonization may have occurred from glacial refugia in central Europe-western Asia. The haplotypes on the Mediterranean peninsulae are distinctive from those found elsewhere. Rather than contributing to the postglacial colonization of Europe, Mediterranean populations of widespread small mammals may represent long-term isolates undergoing allopatric speciation. This could explain the high endemism of small mammals associated with the Mediterranean peninsulae.


Assuntos
Arvicolinae/fisiologia , Clima Frio , Ecossistema , Musaranhos/fisiologia , Animais , Regiões Árticas , Arvicolinae/genética , DNA Mitocondrial/análise , Emigração e Imigração , Haplótipos , Região do Mediterrâneo , Musaranhos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...