Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(2): 2231-2239, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165218

RESUMO

Flexible ferroelectric films with high polarization hold great promise for energy storage and electrocaloric (EC) refrigeration. Herein, we fabricate a lead-free Mn-modified 0.75 Bi(Mg0.5Ti0.5)O3-0.25 BaTiO3 (BMT-BTO) thin film based on a flexible mica substrate. Excellent EC performance with maximum adiabatic temperature change (ΔT ∼23.5 K) and isothermal entropy change (ΔS ∼33.1 J K-1 kg-1) is achieved in the flexible BMT-BTO film, which is attributed to the local structural transition and lattice disorder near 90 °C. Meanwhile, a good energy storage density of ∼70.6 J cm-3 and a quite high efficiency of ∼82% are realized in the same ferroelectric film, accompanied by excellent stability of frequency and electric fatigue (500-10 kHz and 108 cycles). Furthermore, there is no apparent variation in performance under different bending strains. These prominent properties indicate that the multifunctional BMT-BTO ferroelectric film is a promising candidate for applications of flexible energy storage and EC refrigeration.

2.
ACS Appl Mater Interfaces ; 14(45): 50880-50889, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36331435

RESUMO

Flexible ferroelectric capacitors with high energy density and storage efficiency are highly desirable in the next generation of flexible electronic devices. To develop high-performance ferroelectric capacitors, a conventional approach is chemical modification. Here, a novel approach of interlayer coupling is proposed to achieve high energy storage performance in BiMg0.5Ti0.5O3-BaTiO3/BiMg0.5Ti0.5O3 (BMT-BTO/BMT)N multilayer ferroelectric films fabricated on flexible mica substrates via a sol-gel coating method. The interlayer electrostatic coupling between the ferroelectric BMT and relaxor ferroelectric BMT-BTO layers leads to small remnant polarization and large breakdown field strength, resulting in an outstanding energy storage density of ∼106.8 J cm-3 and a good efficiency of ∼75.6% in the multilayer thin films. Further, the energy storage performance remains stable in a wide range of temperatures (25-200 °C) and frequencies (500 Hz to 10 kHz) after 108 electrical loading cycles. The energy storage performance also has no obvious deterioration when the multilayer film experiences 104 mechanical bending cycles with a bending radius of 4 mm. The approach proposed in the present work should be generally implementable in other multilayer flexible ferroelectric capacitors and offers a novel avenue to enhance energy storage performance by tuning the interlayer coupling.

3.
Small ; 18(4): e2106209, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34841650

RESUMO

Ferroelectric thin film capacitors have attracted increasing attention because of their high energy storage density and fast charge-discharge speed, but less attention has been paid to the realization of flexible capacitors for wearable electronics and power systems. In this work, flexible xMn-BiMg0.5 Ti0.7 O3 (xMn-BMT0.7 ) thin film capacitors with ultrahigh energy storage density and good stability are deposited on mica substrate. The introduction of excess TiO2 with an amorphous structure contributes to the forming of the polar nano regions, resulting in the reduced ferroelectric hysteresis. In order to further improve the energy storage performance, Mn doping increases the polarization by regulating chemical pressure in the lattices and inhibits the valence change of Ti4+ . Especially in the 1.5% Mn-BMT0.7 film capacitor, an ultrahigh energy storage density of 124 J cm-3 and an outstanding efficiency of 77% are obtained, which is one of the best energy storage performances recorded for ferroelectric capacitors. In addition, the flexible ferroelectric film capacitor also exhibits good thermal stability (25-200 °C), high frequency reliability (500 Hz-10 kHz), excellent electrical (108 cycles), and mechanical (104 cycles) fatigue properties. This work is expected to pave the way for the application of BMT-based thin film capacitors in flexible energy storage systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...