Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 329: 138583, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019408

RESUMO

This work presented modeling and simulation of CO2 from natural gas. One of the most promising technologies is Pressure Swing Adsorption (PSA), which is an energy-efficient and cost-effective process for separating and capturing CO2 from industrial processes and power plants. This paper provides an overview of the PSA process and its application for CO2 capture, along with a discussion of its advantages, limitations, and future research directions. This process is pressure swing adsorption (PSA) with four adsorption beds. The adsorption bed columns fill with activated carbon as adsorbent. In this simulation momentum, mass and energy balance are solved simultaneously. The process was designed with two beds in adsorption conditions and the other two beds in desorption conditions. The desorption cycle includes blow-down and purge steps. The linear driving force (LDF) estimates the adsorption rate in modeling this process. The extended Langmuir isotherm is used for the equilibrium between solid and gas phases. The temperature changes by heat transfer from the gas phase to solid and axial heat dispersion. The set of partial differential equations is solved using implicit finite difference.


Assuntos
Dióxido de Carbono , Gás Natural , Carvão Vegetal , Adsorção , Temperatura Alta
2.
Polymers (Basel) ; 14(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631966

RESUMO

This attempt aims at assessing heat generation in thermal conductive polymer (TCP) composites widely used in aerospace sectors. Temperature histories were investigated in both nonreinforced and glass-fiber-reinforced TCPs during abrasive milling. Glass/epoxy and glass/polyester composites with 30% unidirectional glass fiber content were prepared according to appropriate curing cycles. Type K thermocouples connected to a data acquisition system ensured the recording of temperature history along the trim plan during milling. Unexpectedly, when milling TCP composites parallel to fibers, peak temperature was found to be slightly lower than that recorded in nonreinforced polymers. The lateral surface of fibers acts to favor sliding friction, which limits heat generation at interfaces, while relatively low specific heat capacity and thermal conductivity of glass fiber disadvantage heat transfer. However, when milling perpendicular to fibers, the contact area between the tool and the transverse failure area of fibers increases drastically, hence involving severe friction at interfaces. This yields peak temperatures sensitively higher than those obtained in nonreinforced polymers. SEM inspections highlighted the failure modes dominating the material removal process in both nonreinforced and glass-fiber-reinforced polymers. The microcracks and debris observed at the trim plan explain, in part, the heat generation detected on temperature rate plots. Thus, heat conduction between phases governs sensitive surface finish integrity and tool lifetime and, hence, has great economic impact on the manufacturing steps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...