Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5209, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071035

RESUMO

The Early Jurassic Butcher Ridge Igneous Complex (BRIC) in the Transantarctic Mountains contains abundant and variably hydrated silicic glass which has the potential to preserve a rich paleoclimate record. Here we present Fourier Transform Infrared Spectroscopic data that indicates BRIC glasses contain up to ~8 wt.% molecular water (H2Om), and low (<0.8 wt.%) hydroxyl (OH) component, interpreted as evidence for secondary hydration by meteoric water. BRIC glasses contain the most depleted hydrogen isotopes yet measured in terrestrial rocks, down to δD = -325 ‰. In situ 40Ar/39Ar geochronology of hydrated glasses with ultra-depleted δD values yield ages from 105 Ma to 72 Ma with a peak at c. 91.4 Ma. Combined, these data suggest hydration of BRIC glasses by polar glacial ice and melt water during the Late Cretaceous, contradicting paleoclimate reconstructions of this period that suggest Antarctica was ice-free and part of a global hot greenhouse.

2.
Nat Commun ; 13(1): 3779, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788136

RESUMO

Oxygen isotopic ratios are largely homogenous in the bulk of Earth's mantle but are strongly fractionated near the Earth's surface, thus these are robust indicators of recycling of surface materials to the mantle. Here we document a subtle but significant ~0.2‰ temporal decrease in δ18O in the shallowest continental lithospheric mantle since the Archean, no change in Δ'17O is observed. Younger samples document a decrease and greater heterogeneity of δ18O due to the development and progression of plate tectonics and subduction. We posit that δ18O in the oldest Archean samples provides the best δ18O estimate for the Earth of 5.37‰ for olivine and 5.57‰ for bulk peridotite, values that are comparable to lunar rocks as the moon did not have plate tectonics. Given the large volume of the continental lithospheric mantle, even small decreases in its δ18O may explain the increasing δ18O of the continental crust since oxygen is progressively redistributed by fluids between these reservoirs via high-δ18O sediment accretion and low-δ18O mantle in subduction zones.

3.
Proc Natl Acad Sci U S A ; 115(41): 10287-10292, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30249648

RESUMO

Hydrosphere interactions and alteration of the terrestrial crust likely played a critical role in shaping Earth's surface, and in promoting prebiotic reactions leading to life, before 4.03 Ga (the Hadean Eon). The identity of aqueously altered material strongly depends on lithospheric cycling of abundant and water-soluble elements such as Si and O. However, direct constraints that define the character of Hadean sedimentary material are absent because samples from this earliest eon are limited to detrital zircons (ZrSiO4). Here we show that concurrent measurements of Si and O isotope ratios in Phanerozoic and detrital pre-3.0 Ga zircon constrain the composition of aqueously altered precursors incorporated into their source melts. Phanerozoic zircon from (S)edimentary-type rocks contain heterogeneous δ18O and δ30Si values consistent with assimilation of metapelitic material, distinct from the isotopic character of zircon from (I)gneous- and (A)norogenic-type rocks. The δ18O values of detrital Archean zircons are heterogeneous, although yield Si isotope compositions like mantle-derived zircon. Hadean crystals yield elevated δ18O values (vs. mantle zircon) and δ30Si values span almost the entire range observed for Phanerozoic samples. Coupled Si and O isotope data represent a constraint on Hadean weathering and sedimentary input into felsic melts including remelting of amphibolites possibly of basaltic origin, and fractional addition of chemical sediments, such as cherts and/or banded iron formations (BIFs) into source melts. That such sedimentary deposits were extensive enough to change the chemical signature of intracrustal melts suggests they may have been a suitable niche for (pre)biotic chemistry as early as 4.1 Ga.


Assuntos
Isótopos/análise , Espectrometria de Massas/métodos , Isótopos de Oxigênio/análise , Silicatos/análise , Silicatos/química , Silício/análise , Zircônio/análise , Zircônio/química , Austrália , Sedimentos Geológicos/química , África do Sul
4.
Science ; 357(6357): 1271-1274, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28935801

RESUMO

Earth exhibits a dichotomy in elevation and chemical composition between the continents and ocean floor. Reconstructing when this dichotomy arose is important for understanding when plate tectonics started and how the supply of nutrients to the oceans changed through time. We measured the titanium isotopic composition of shales to constrain the chemical composition of the continental crust exposed to weathering and found that shales of all ages have a uniform isotopic composition. This can only be explained if the emerged crust was predominantly felsic (silica-rich) since 3.5 billion years ago, requiring an early initiation of plate tectonics. We also observed a change in the abundance of biologically important nutrients phosphorus and nickel across the Archean-Proterozoic boundary, which might have helped trigger the rise in atmospheric oxygen.

5.
Sci Rep ; 7: 40624, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120860

RESUMO

Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core-rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

6.
Sci Rep ; 5: 14026, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26356304

RESUMO

Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

7.
Nature ; 447(7145): 702-5, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17554305

RESUMO

Evidence for the deep recycling of surficial materials through the Earth's mantle and their antiquity has long been sought to understand the role of subducting plates and plumes in mantle convection. Radiogenic isotope evidence for such recycling remains equivocal because the age and location of parent-daughter fractionation are not known. Conversely, while stable isotopes can provide irrefutable evidence for low-temperature fractionation, their range in most unaltered oceanic basalts is limited and the age of any variation is unconstrained. Here we show that delta(18)O ratios in basalts from the Azores are often lower than in pristine mantle. This, combined with increased Nb/B ratios and a large range in delta(11)B ratios, provides compelling evidence for the recycling of materials that had undergone fractionation near the Earth's surface. Moreover, delta(11)B is negatively correlated with (187)Os/(188)Os ratios, which extend to subchondritic values, constraining the age of the high Nb/B, (11)B-enriched endmember to be more than 2.5 billion years (Gyr) old. We infer this component to be melt- and fluid-depleted lithospheric mantle from a subducted oceanic plate, whereas other Azores basalts contain a contribution from approximately 3-Gyr-old melt-enriched basalt. We conclude that both components are most probably derived from an Archaean oceanic plate that was subducted, arguably into the deep mantle, where it was stored until thermal buoyancy caused it to rise beneath the Azores islands approximately 3 Gyr later.

8.
Sci Am ; 294(6): 36-43, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16711358
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA