Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 902059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246361

RESUMO

Photocaged inducer molecules, especially photocaged isopropyl-ß-d-1-thiogalactopyranoside (cIPTG), are well-established optochemical tools for light-regulated gene expression and have been intensively applied in Escherichia coli and other bacteria including Corynebacterium glutamicum, Pseudomonas putida or Bacillus subtilis. In this study, we aimed to implement a light-mediated on-switch for target gene expression in the facultative anoxygenic phototroph Rhodobacter capsulatus by using different cIPTG variants under both phototrophic and non-phototrophic cultivation conditions. We could demonstrate that especially 6-nitropiperonyl-(NP)-cIPTG can be applied for light-mediated induction of target gene expression in this facultative phototrophic bacterium. Furthermore, we successfully applied the optochemical approach to induce the intrinsic carotenoid biosynthesis to showcase engineering of a cellular function. Photocaged IPTG thus represents a light-responsive tool, which offers various promising properties suitable for future applications in biology and biotechnology including automated multi-factorial control of cellular functions as well as optimization of production processes.

2.
Chembiochem ; 23(1): e202100467, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34750949

RESUMO

Photocaged compounds are applied for implementing precise, optochemical control of gene expression in bacteria. To broaden the scope of UV-light-responsive inducer molecules, six photocaged carbohydrates were synthesized and photochemically characterized, with the absorption exhibiting a red-shift. Their differing linkage through ether, carbonate, and carbamate bonds revealed that carbonate and carbamate bonds are convenient. Subsequently, those compounds were successfully applied in vivo for controlling gene expression in E. coli via blue light illumination. Furthermore, benzoate-based expression systems were subjected to light control by establishing a novel photocaged salicylic acid derivative. Besides its synthesis and in vitro characterization, we demonstrate the challenging choice of a suitable promoter system for light-controlled gene expression in E. coli. We illustrate various bottlenecks during both photocaged inducer synthesis and in vivo application and possibilities to overcome them. These findings pave the way towards novel caged inducer-dependent systems for wavelength-selective gene expression.


Assuntos
Carboidratos/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Carboidratos/síntese química , Processos Fotoquímicos , Regiões Promotoras Genéticas/genética
3.
Chembiochem ; 22(3): 539-547, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32914927

RESUMO

Photolabile protecting groups play a significant role in controlling biological functions and cellular processes in living cells and tissues, as light offers high spatiotemporal control, is non-invasive as well as easily tuneable. In the recent past, photo-responsive inducer molecules such as 6-nitropiperonyl-caged IPTG (NP-cIPTG) have been used as optochemical tools for Lac repressor-controlled microbial expression systems. To further expand the applicability of the versatile optochemical on-switch, we have investigated whether the modulation of cIPTG water solubility can improve the light responsiveness of appropriate expression systems in bacteria. To this end, we developed two new cIPTG derivatives with different hydrophobicity and demonstrated both an easy applicability for the light-mediated control of gene expression and a simple transferability of this optochemical toolbox to the biotechnologically relevant bacteria Pseudomonas putida and Bacillus subtilis. Notably, the more water-soluble cIPTG derivative proved to be particularly suitable for light-mediated gene expression in these alternative expression hosts.


Assuntos
Bacillus subtilis/genética , Repressores Lac/metabolismo , Luz , Pseudomonas putida/genética , Tiogalactosídeos/metabolismo , Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Repressores Lac/química , Processos Fotoquímicos , Pseudomonas putida/metabolismo , Solubilidade , Tiogalactosídeos/química
4.
Biotechnol Bioeng ; 116(6): 1537-1555, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30793282

RESUMO

Nowadays, chemically defined cell culture media (CCM) have replaced serum- and hydrolysate-based media that rely on complex ingredients, such as yeast extracts or peptones. Benefits include a significantly lower lot-to-lot variability, more efficient manufacturing by reduction to essential components, and the ability to exclude components that may negatively influence growth, viability, or productivity. Even though current chemically defined CCMs provide an excellent basis for various mammalian biotechnological processes, vitamin instabilities are known to be a key factor contributing to the variabilities still present in liquid CCM as well as to short storage times. In this review, the chemical degradation pathways and products for the most relevant vitamins for CCM will be discussed, with a focus on the effects of light, oxygen, heat, and other CCM compounds. Different approaches to stabilize vitamins in solution, such as replacement with analogs, encapsulation, or the addition of stabilizing compounds will also be reviewed. While these vitamins and vitamin stabilization approaches are presented here as particular for CCM, the application of these concepts can also be considered relevant for pharmaceutical, medical, and food supplement purposes. More precise knowledge regarding vitamin instabilities will contribute to stabilize future formulations and thus decrease residual lot-to-lot variability.


Assuntos
Meios de Cultura/química , Vitaminas/química , Animais , Biotecnologia/métodos , Técnicas de Cultura de Células/métodos , Meios de Cultura/metabolismo , Estabilidade de Medicamentos , Excipientes/química , Excipientes/metabolismo , Temperatura Alta , Humanos , Luz , Oxigênio/metabolismo , Vitaminas/metabolismo
5.
PLoS One ; 13(7): e0200940, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30024935

RESUMO

Bacterial secondary metabolites are naturally produced to prevail amongst competitors in a shared habitat and thus represent a valuable source for antibiotic discovery. The transformation of newly discovered antibiotic compounds into effective drugs often requires additional surfactant components for drug formulation. Nature may also provide blueprints in this respect: A cocktail of two compounds consisting of the antibacterial red pigment prodigiosin and the biosurfactant serrawettin W1 is naturally produced by the bacterium Serratia marcescens, which occurs in highly competitive habitats including soil. We show here a combinatorial antibacterial effect of these compounds, but also of prodigiosin mixed with other (bio)surfactants, against the soil-dwelling bacterium Corynebacterium glutamicum taken as a model target bacterium. Prodigiosin exerted a combinatorial inhibitory effect with all tested surfactants in a disk diffusion assay which was especially pronounced in combination with N-myristoyltyrosine. Minimal inhibitory and bactericidal concentrations (MIC and MBC) of the individual compounds were 2.56 µg/mL prodigiosin and 32 µg/mL N-myristoyltyrosine, and the MIC of prodigiosin was decreased by 3 orders of magnitude to 0.005 µg/mL in the presence of 16 µg/mL N-myristoyltyrosine, indicative of synergistic interaction. Investigation of bacterial survival revealed similar combinatorial effects; moreover, antagonistic effects were observed at higher compound concentrations. Finally, the investigation of microcolony formation under combined application of concentrations just below the MBC revealed heterogeneity of responses with cell death or delayed growth. In summary, this study describes the combinatorial antibacterial effects of microbial biomolecules, which may have ecological relevance by inhibiting cohabiting species, but shall furthermore inspire drug development in the combat of infectious disease.


Assuntos
Antibacterianos/farmacologia , Corynebacterium glutamicum/crescimento & desenvolvimento , Depsipeptídeos/farmacologia , Prodigiosina/farmacologia , Serratia marcescens/metabolismo , Tensoativos/farmacologia , Antibacterianos/biossíntese , Corynebacterium glutamicum/efeitos dos fármacos , Desinfetantes , Combinação de Medicamentos , Testes de Sensibilidade Microbiana , Prodigiosina/biossíntese , Serratia marcescens/crescimento & desenvolvimento
6.
Metab Eng ; 42: 145-156, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28645641

RESUMO

In natural habitats, microbes form multispecies communities that commonly face rapidly changing and highly competitive environments. Thus, phenotypic heterogeneity has evolved as an innate and important survival strategy to gain an overall fitness advantage over cohabiting competitors. However, in defined artificial environments such as monocultures in small- to large-scale bioreactors, cell-to-cell variations are presumed to cause reduced production yields as well as process instability. Hence, engineering microbial production toward phenotypic homogeneity is a highly promising approach for synthetic biology and bioprocess optimization. In this review, we discuss recent studies that have unraveled the cell-to-cell heterogeneity observed during bacterial gene expression and metabolite production as well as the molecular mechanisms involved. In addition, current single-cell technologies are briefly reviewed with respect to their applicability in exploring cell-to-cell variations. We highlight emerging strategies and tools to reduce phenotypic heterogeneity in biotechnological expression setups. Here, strain or inducer modifications are combined with cell physiology manipulations to achieve the ultimate goal of equalizing bacterial populations. In this way, the majority of cells can be forced into high productivity, thus reducing less productive subpopulations that tend to consume valuable resources during production. Modifications in uptake systems, inducer molecules or nutrients represent valuable tools for diminishing heterogeneity. Finally, we address the challenge of transferring homogeneously responding cells into large-scale bioprocesses. Environmental heterogeneity originating from extrinsic factors such as stirring speed and pH, oxygen, temperature or nutrient distribution can significantly influence cellular physiology. We conclude that engineering microbial populations toward phenotypic homogeneity is an increasingly important task to take biotechnological productions to the next level of control.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Engenharia Metabólica/métodos , Biologia de Sistemas/métodos , Engenharia Metabólica/tendências , Biologia de Sistemas/tendências
7.
PLoS One ; 11(8): e0160711, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27525986

RESUMO

Recombinant protein production is mostly realized with large-scale cultivations and monitored at the level of the entire population. Detailed knowledge of cell-to-cell variations with respect to cellular growth and product formation is limited, even though phenotypic heterogeneity may distinctly hamper overall production yields, especially for toxic or difficult-to-express proteins. Unraveling phenotypic heterogeneity is thus a key aspect in understanding and optimizing recombinant protein production in biotechnology and synthetic biology. Here, microfluidic single-cell analysis serves as the method of choice to investigate and unmask population heterogeneities in a dynamic and spatiotemporal fashion. In this study, we report on comparative microfluidic single-cell analyses of commonly used E. coli expression systems to uncover system-inherent specifications in the synthetic M9CA growth medium. To this end, the PT7lac/LacI, the PBAD/AraC and the Pm/XylS system were systematically analyzed in order to gain detailed insights into variations of growth behavior and expression phenotypes and thus to uncover individual strengths and deficiencies at the single-cell level. Specifically, we evaluated the impact of different system-specific inducers, inducer concentrations as well as genetic modifications that affect inducer-uptake and regulation of target gene expression on responsiveness and phenotypic heterogeneity. Interestingly, the most frequently applied expression system based on E. coli strain BL21(DE3) clearly fell behind with respect to expression homogeneity and robustness of growth. Moreover, both the choice of inducer and the presence of inducer uptake systems proved crucial for phenotypic heterogeneity. Conclusively, microfluidic evaluation of different inducible E. coli expression systems and setups identified the modified lacY-deficient PT7lac/LacI as well as the Pm/XylS system with conventional m-toluic acid induction as key players for precise and robust triggering of bacterial gene expression in E. coli in a homogeneous fashion.


Assuntos
Técnicas de Cultura de Células/instrumentação , Escherichia coli/citologia , Escherichia coli/genética , Engenharia Genética/instrumentação , Dispositivos Lab-On-A-Chip , Análise de Célula Única/instrumentação , Proliferação de Células , Expressão Gênica , Fenótipo
8.
Appl Environ Microbiol ; 82(20): 6141-6149, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27520809

RESUMO

Precise control of microbial gene expression resulting in a defined, fast, and homogeneous response is of utmost importance for synthetic bio(techno)logical applications. However, even broadly applied biotechnological workhorses, such as Corynebacterium glutamicum, for which induction of recombinant gene expression commonly relies on the addition of appropriate inducer molecules, perform moderately in this respect. Light offers an alternative to accurately control gene expression, as it allows for simple triggering in a noninvasive fashion with unprecedented spatiotemporal resolution. Thus, optogenetic switches are promising tools to improve the controllability of existing gene expression systems. In this regard, photocaged inducers, whose activities are initially inhibited by light-removable protection groups, represent one of the most valuable photoswitches for microbial gene expression. Here, we report on the evaluation of photocaged isopropyl-ß-d-thiogalactopyranoside (IPTG) as a light-responsive control element for the frequently applied tac-based expression module in C. glutamicum In contrast to conventional IPTG, the photocaged inducer mediates a tightly controlled, strong, and homogeneous expression response upon short exposure to UV-A light. To further demonstrate the unique potential of photocaged IPTG for the optimization of production processes in C. glutamicum, the optogenetic switch was finally used to improve biosynthesis of the growth-inhibiting sesquiterpene (+)-valencene, a flavoring agent and aroma compound precursor in food industry. The variation in light intensity as well as the time point of light induction proved crucial for efficient production of this toxic compound. IMPORTANCE: Optogenetic tools are light-responsive modules that allow for a simple triggering of cellular functions with unprecedented spatiotemporal resolution and in a noninvasive fashion. Specifically, light-controlled gene expression exhibits an enormous potential for various synthetic bio(techno)logical purposes. Before our study, poor inducibility, together with phenotypic heterogeneity, was reported for the IPTG-mediated induction of lac-based gene expression in Corynebacterium glutamicum By applying photocaged IPTG as a synthetic inducer, however, these drawbacks could be almost completely abolished. Especially for increasing numbers of parallelized expression cultures, noninvasive and spatiotemporal light induction qualifies for a precise, homogeneous, and thus higher-order control to fully automatize or optimize future biotechnological applications.


Assuntos
Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Isopropiltiogalactosídeo/metabolismo , Regiões Promotoras Genéticas/efeitos da radiação , Sesquiterpenos/metabolismo , Corynebacterium glutamicum/genética , Sesquiterpenos/química , Raios Ultravioleta
9.
Microb Cell Fact ; 15: 63, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27107964

RESUMO

BACKGROUND: Inducible expression systems are frequently used for the production of heterologous proteins. Achieving maximum product concentrations requires induction profiling, namely the optimization of induction time and inducer concentration. However, the respective experiments can be very laborious and time-consuming. In this work, a new approach for induction profiling is presented where induction in a microtiter plate based cultivation system (BioLector) is achieved by light using photocaged isopropyl ß-D-1-thiogalactopyranoside (cIPTG). RESULTS: A flavin mononucleotide-based fluorescent reporter protein (FbFP) was expressed using a T7-RNA-polymerase dependent E. coli expression system which required IPTG as inducer. High power UV-A irradiation was directed into a microtiter plate by light-emitting diodes placed above each well of a 48-well plate. Upon UV irradiation, IPTG is released (uncaged) and induces product formation. IPTG uncaging, formation of the fluorescent reporter protein and biomass growth were monitored simultaneously in up to four 48-well microtiter plates in parallel with an in-house constructed BioLector screening system. The amount of released IPTG can be gradually and individually controlled for each well by duration of UV-A exposure, irradiance and concentration of photocaged IPTG added at the start of the cultivation. A comparison of experiments with either optical or conventional IPTG induction shows that product formation and growth are equivalent. Detailed induction profiles revealed that for the strain and conditions used maximum product formation is reached for very early induction times and with just 6-8 s of UV-A irradiation or 60-80 µM IPTG. CONCLUSIONS: Optical induction and online monitoring were successfully combined in a high-throughput screening system and the effect of optical induction with photocaged IPTG was shown to be equivalent to conventional induction with IPTG. In contrast to conventional induction, optical induction is less costly to parallelize, easy to automate, non-invasive and without risk of contamination. Therefore, light-induced gene expression with photocaged IPTG is a highly advantageous method for the efficient optimization of heterologous protein production and has the potential to replace conventional induction with IPTG.


Assuntos
Escherichia coli , Regulação Bacteriana da Expressão Gênica , Ensaios de Triagem em Larga Escala/métodos , Microbiologia Industrial/métodos , Isopropiltiogalactosídeo/farmacologia , Técnicas Bacteriológicas/métodos , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
Chembiochem ; 17(4): 296-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26677142

RESUMO

Controlling cellular functions by light allows simple triggering of biological processes in a non-invasive fashion with high spatiotemporal resolution. In this context, light-regulated gene expression has enormous potential for achieving optogenetic control over almost any cellular process. Here, we report on two novel one-step cleavable photocaged arabinose compounds, which were applied as light-sensitive inducers of transcription in bacteria. Exposure of caged arabinose to UV-A light resulted in rapid activation of protein production, as demonstrated for GFP and the complete violacein biosynthetic pathway. Moreover, single-cell analysis revealed that intrinsic heterogeneity of arabinose-mediated induction of gene expression was overcome when using photocaged arabinose. We have thus established a novel phototrigger for synthetic bio(techno)logy applications that enables precise and homogeneous control of bacterial target gene expression.


Assuntos
Arabinose/metabolismo , Chromobacterium/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Optogenética/métodos , Vias Biossintéticas/efeitos da radiação , Chromobacterium/metabolismo , Chromobacterium/efeitos da radiação , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Indóis/metabolismo , Família Multigênica/efeitos da radiação , Análise de Célula Única , Raios Ultravioleta
11.
Integr Biol (Camb) ; 6(8): 755-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24894989

RESUMO

Light can be used to control numerous cellular processes including protein function and interaction as well as gene expression in a non-invasive fashion and with unprecedented spatiotemporal resolution. However, for chemical phototriggers tight, gradual, and homogeneous light response has never been attained in living cells. Here, we report on a light-responsive bacterial T7 RNA polymerase expression system based on a photocaged derivative of the inducer molecule isopropyl-ß-d-thiogalactopyranoside (IPTG). We have comparatively analyzed different Escherichia coli lac promoter-regulated expression systems in batch and microfluidic single-cell cultivation. The lacY-deficient E. coli strain Tuner(DE3) harboring additional plasmid-born copies of the lacI gene exhibited a sensitive and defined response to increasing IPTG concentrations. Photocaged IPTG served as a synthetic photo-switch to convert the E. coli system into an optogenetic expression module allowing for precise and gradual light-triggering of gene expression as demonstrated at the single cell level.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Isopropiltiogalactosídeo/química , Luz , Regiões Promotoras Genéticas , Benzaldeídos/química , RNA Polimerases Dirigidas por DNA/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Genômica , Processamento de Imagem Assistida por Computador , Óperon Lac , Técnicas Analíticas Microfluídicas , Proteínas de Transporte de Monossacarídeos/metabolismo , Plasmídeos/metabolismo , Simportadores/metabolismo , Fatores de Tempo , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...