Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 219: 112797, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36063718

RESUMO

The degradation of mesoporous silica nanoparticles (MSNs) in the biological milieu due to silica hydrolysis plays a fundamental role for the delivery of encapsulated drugs and therapeutics. However, little is known on the evolution of the pore arrangement in the MSNs in biologically relevant conditions. Small Angle X-ray scattering (SAXS) studies were performed on unmodified and PEGylated MSNs with a MCM-48 pore structure and average sizes of 140 nm, exposed to simulated body fluid solution (SBF) at pH 7.4 for different time intervals from 30 min to 24 h. Experiments were performed with silica concentrations below, at and over 0.14 mg/mL, the saturation concentration of silica in water at physiological temperature. At silica concentrations of 1 mg/mL (oversaturation), unmodified MSNs show variation in interpore distances over 6 h exposure to SBF, remaining constant thereafter. A decrease in radius of gyration is observed over the same time. Mesoporosity and radius of gyration of unmodified MSNs remain then unchanged up to 24 h. PEGylated MSNs at 1 mg/mL concentration show a broader diffraction peak but no change in the position of the peak is observed following 24 h exposure to SBF. PEGylated MSNs at 0.01 mg/mL show no diffraction peaks already after 30 min exposure to SBF, while at 0.14 mg/mL a small diffraction peak is present after 30 min exposure but disappears after 1 h.

2.
Small ; 17(30): e2101519, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34145769

RESUMO

While mesoporous silica nanoparticles (MSNs) are extensively studied as high-potential drug delivery platforms, the successful clinical translation of these nanocarriers strongly depends on their biodistribution, biodegradation, and elimination patterns in vivo. Here, a novel method is reported to follow the in vivo degradation of MSNs by tracking a radioactive label embedded in the silica structure. Core-shell silica nanoparticles (NPs) with a dense core and a mesoporous shell are labeled with low quantities of the positron emitter 89 Zr, either in the dense core or in the mesoporous shell. In vivo positron emission tomography imaging and ex vivo organ measurements reveal a remarkable difference in the 89 Zr biodistribution between the shell-labeled and the core-labeled NPs. Release of the radiotracer from shell-labeled NPs is used as a probe of the extent of silica dissolution, and a prompt release of the radioisotope is observed, with partial excretion already in the first 2 h post injection, and a slower accumulation in bones over time. On the other hand, when 89 Zr is embedded in the nanoparticle core, the biodistribution remains largely unchanged during the first 6 h. These findings indicate that MSNs have fast, hour-scale, degradation kinetics in vivo.


Assuntos
Nanopartículas , Dióxido de Silício , Sistemas de Liberação de Medicamentos , Porosidade , Distribuição Tecidual
3.
ACS Appl Mater Interfaces ; 12(12): 13598-13612, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32077678

RESUMO

Mesoporous silica nanoparticles (MSNs) have seen a fast development as drug delivery carriers thanks to their tunable porosity and high loading capacity. The employ of MSNs in biomedical applications requires a good understanding of their degradation behavior both to control drug release and to assess possible toxicity issues on human health. In this work, we study mesoporous silica degradation in biologically relevant conditions through in situ ellipsometry on model mesoporous nanoparticle or continuous thin films, in buffer solution and in media containing proteins. In order to shed light on the structure/dissolution relationship, we performed dissolution experiments far from soluble silicate species saturation. Via a complete decorrelation of dissolution and diffusion contributions, we proved unambiguously that surface area of silica vectors is the main parameter influencing dissolution kinetics, while thermal treatment and open mesoporous network architecture have a minor impact. As a logical consequence of our dissolution model, we proved that the dissolution lag-time can be promoted by selective blocking of the mesopores that limits the access to the mesoporous internal surface. This study was broadened by studying the impact of the organosilanes in the silica structure, of the presence of residual structuring agents, and of the chemical composition of the dissolution medium. The presence of albumin at blood concentration was found affecting drastically the dissolution kinetics of the mesoporous structure, acting as a diffusion barrier. Globally, we could identify the main factors affecting mesoporous silica materials degradation and proved that we can tune their structure and composition for adjusting dissolution kinetics in order to achieve efficient drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Proteínas/química , Dióxido de Silício/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Cinética , Nanopartículas/uso terapêutico , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...