Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 532, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782969

RESUMO

To study the validation process for sea surface salinity (SSS) we have generated one year (November 2011- October 2012) of simulated satellite and in situ "ground truth" data. This was done using the ECCO (Estimating the Circulation and Climate of the Oceans) 1/48° simulation, the highest resolution global ocean model currently available. The ground tracks of three satellites, Aquarius, SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture and Ocean Salinity) were extracted and used to sample the model with a gaussian weighting similar to that of the spaceborne sensor ground footprint. This produced simulated level 2 (L2) data. Simulated level 3 (L3) data were then produced by averaging L2 data onto a regular grid. The model was sampled to produce simulated Argo and tropical mooring SSS datasets. The Argo data were combined into a simulated gridded monthly 1° Argo product. The simulated data produced from this effort have been used to study sampling errors, matchups, subfootprint variability and the validation process for SSS at L2 and L3.

2.
Ann N Y Acad Sci ; 1472(1): 76-94, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386251

RESUMO

The ocean plays a dominant role in the global water cycle. It is the center of action for global evaporation and precipitation and supplies the moisture that falls as continental precipitation. It also acts to some extent as nature's rain gauge, as it tells us about the long-term changes in the global water cycle through monitoring of the changes in ocean surface salinity. As climate warms, the global water cycle is expected to intensify as a result of the strong nonlinear dependence of water vapor pressure (moisture-holding capacity) on temperature. Such change is of great concern, as it has profound socioeconomic impacts throughout the globe. Despite the evidence of an intensified global water cycle, two important questions remain: What is the pattern of the warming-induced intensification of the water cycle? and What is the rate of intensification? Our article provides a synthesis review of recent progress in diagnosing and understanding the changes in both the global water cycle and ocean salinity in recent decades. Targeted numerical ocean model experiments are also reviewed to provide insights into the response of salinity to the changes in evaporation-minus-precipitation flux, meltwater runoff, and ocean warming.


Assuntos
Salinidade , Ciclo Hidrológico , Clima , Mudança Climática , Modelos Teóricos , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...