Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732949

RESUMO

With the escalating demand for Radio Frequency Identification (RFID) technology and the Internet of Things (IoT), there is a growing need for sustainable and autonomous power solutions to energize low-powered devices. Consequently, there is a critical imperative to mitigate dependency on batteries during passive operation. This paper proposes the conceptual framework of rectenna architecture-based radio frequency energy harvesters' performance, specifically optimized for low-power device applications. The proposed prototype utilizes the surroundings' Wi-Fi signals within the 2.4 GHz frequency band. The design integrates a seven-stage Cockroft-Walton rectifier featuring a Schottky diode HSMS286C and MA4E2054B1-1146T, a low-pass filter, and a fractal antenna. Preliminary simulations conducted using Advanced Design System (ADS) reveal that a voltage of 3.53 V can be harvested by employing a 1.57 mm thickness Rogers 5880 printed circuit board (PCB) substrate with an MA4E2054B1-1146T rectifier prototype, given a minimum power input of -10 dBm (0.1 mW). Integrating the fabricated rectifier and fractal antenna successfully yields a 1.5 V DC output from Wi-Fi signals, demonstrable by illuminating a red LED. These findings underscore the viability of deploying a fractal antenna-based radio frequency (RF) harvester for empowering small electronic devices.

2.
Sci Rep ; 14(1): 4511, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402261

RESUMO

Dry gas pipelines can encounter various operational, technical, and environmental issues, such as corrosion, leaks, spills, restrictions, and cyber threats. To address these difficulties, proactive maintenance and management and a new technological strategy are needed to increase safety, reliability, and efficiency. A novel neural network model for forecasting the life of a dry gas pipeline system and detecting the metal loss dimension class that is exposed to a harsh environment is presented in this study to handle the missing data. The proposed strategy blends the strength of deep learning techniques with industry-specific expertise. The main advantage of this study is to predict the pipeline life with a significant advantage of predicting the dimension classification of metal loss simultaneously employing a Bayesian regularization-based neural network framework when there are missing inputs in the datasets. The proposed intelligent model, trained on four pipeline datasets of a dry gas pipeline system, can predict the health condition of pipelines with high accuracy, even if there are missing parameters in the dataset. The proposed model using neural network technology generated satisfactory results in terms of numerical performance, with MSE and R2 values closer to 0 and 1, respectively. A few cases with missing input data are carried out, and the missing data is forecasted for each case. Then, a model is developed to predict the life condition of pipelines with the predicted missing input variables. The findings reveal that the model has the potential for real-world applications in the oil and gas sector for estimating the health condition of pipelines, even if there are missing input parameters. Additionally, multi-model comparative analysis and sensitivity analysis are incorporated, offering an extensive comprehension of multi-model prediction abilities and beneficial insights into the impact of various input variables on model outputs, thereby improving the interpretability and reliability of our results. The proposed framework could help business plans by lowering the chance of severe accidents and environmental harm with better safety and reliability.

3.
Sci Rep ; 13(1): 17658, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848485

RESUMO

Wireless technology is becoming increasingly critical in industrial environments in recent years, and the popular wireless standards are WirelessHART, ZigBee, WLAN and ISA100.11a, commonly used in closed-loop systems. However, wireless networks in closed-loop control experience packet loss or drops, system delay and data threats, leading to process instability and catastrophic system failure. To prevent such issues, it is necessary to implement dead-time compensation control. Traditional techniques like model predictive and predictive PI controllers are frequently employed. However, these methods' performance is sluggish in wireless networks, with processes having long dead times and set-point variations, potentially affecting network and process performance. Therefore, this paper proposes a fractional calculus-based predictive PI compensator for wired and wireless networks in the process control industries. The proposed technique has been simulated and evaluated on industrial process models, including pressure, flow, and temperature, where measurement and control are carried out wirelessly. The wireless network's performance has been evaluated based on packet loss, reduced throughput, and increased system latency. The proposed compensator outperformed traditional methods, demonstrating superior set-point tracking, disturbance rejection, and delay compensation characteristics in the performance evaluations of the first, second, and third-order systems. Overall, the findings indicate that the proposed compensator enhances wireless networks' performance in the process control industry and improves system stability and reliability by reducing almost half of the overshoot and settling an average of 8.3927% faster than the conventional techniques in most of the systems.

4.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448072

RESUMO

A novel hybrid Harris Hawk-Arithmetic Optimization Algorithm (HHAOA) for optimizing the Industrial Wireless Mesh Networks (WMNs) and real-time pressure process control was proposed in this research article. The proposed algorithm uses inspiration from Harris Hawk Optimization and the Arithmetic Optimization Algorithm to improve position relocation problems, premature convergence, and the poor accuracy the existing techniques face. The HHAOA algorithm was evaluated on various benchmark functions and compared with other optimization algorithms, namely Arithmetic Optimization Algorithm, Moth Flame Optimization, Sine Cosine Algorithm, Grey Wolf Optimization, and Harris Hawk Optimization. The proposed algorithm was also applied to a real-world industrial wireless mesh network simulation and experimentation on the real-time pressure process control system. All the results demonstrate that the HHAOA algorithm outperforms different algorithms regarding mean, standard deviation, convergence speed, accuracy, and robustness and improves client router connectivity and network congestion with a 31.7% reduction in Wireless Mesh Network routers. In the real-time pressure process, the HHAOA optimized Fractional-order Predictive PI (FOPPI) Controller produced a robust and smoother control signal leading to minimal peak overshoot and an average of a 53.244% faster settling. Based on the results, the algorithm enhanced the efficiency and reliability of industrial wireless networks and real-time pressure process control systems, which are critical for industrial automation and control applications.


Assuntos
Algoritmos , Redes de Comunicação de Computadores , Reprodutibilidade dos Testes , Tecnologia sem Fio
5.
Sensors (Basel) ; 22(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35746122

RESUMO

A smart grid is a modern electricity system enabling a bidirectional flow of communication that works on the notion of demand response. The stability prediction of the smart grid becomes necessary to make it more reliable and improve the efficiency and consistency of the electrical supply. Due to sensor or system failures, missing input data can often occur. It is worth noting that there has been no work conducted to predict the missing input variables in the past. Thus, this paper aims to develop an enhanced forecasting model to predict smart grid stability using neural networks to handle the missing data. Four case studies with missing input data are conducted. The missing data is predicted for each case, and then a model is prepared to predict the stability. The Levenberg-Marquardt algorithm is used to train all the models and the transfer functions used are tansig and purelin in the hidden and output layers, respectively. The model's performance is evaluated on a four-node star network and is measured in terms of the MSE and R2 values. The four stability prediction models demonstrate good performances and depict the best training and prediction ability.


Assuntos
Algoritmos , Redes Neurais de Computação , Sistemas Computacionais
6.
Sensors (Basel) ; 22(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408409

RESUMO

Saybolt color is a standard measurement scale used to determine the quality of petroleum products and the appropriate refinement process. However, the current color measurement methods are mostly laboratory-based, thereby consuming much time and being costly. Hence, we designed an automated model based on an artificial neural network to predict Saybolt color. The network has been built with five input variables, density, kinematic viscosity, sulfur content, cetane index, and total acid number; and one output, i.e., Saybolt color. Two backpropagation algorithms with different transfer functions and neurons number were tested. Mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) were used to assess the performance of the developed model. Additionally, the results of the ANN model are compared with the multiple linear regression (MLR). The results demonstrate that the ANN with the Levenberg-Marquart algorithm, tangent sigmoid transfer function, and three neurons achieved the highest performance (R2 = 0.995, MAE = 1.000, and RMSE = 1.658) in predicting the Saybolt color. The ANN model appeared to be superior to MLR (R2 = 0.830). Hence, this shows the potential of the ANN model as an effective method with which to predict Saybolt color in real time.


Assuntos
Redes Neurais de Computação , Petróleo , Algoritmos , Modelos Lineares , Neurônios
7.
Sensors (Basel) ; 22(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35062578

RESUMO

This paper proposes a novel hybrid arithmetic-trigonometric optimization algorithm (ATOA) using different trigonometric functions for complex and continuously evolving real-time problems. The proposed algorithm adopts different trigonometric functions, namely sin, cos, and tan, with the conventional sine cosine algorithm (SCA) and arithmetic optimization algorithm (AOA) to improve the convergence rate and optimal search area in the exploration and exploitation phases. The proposed algorithm is simulated with 33 distinct optimization test problems consisting of multiple dimensions to showcase the effectiveness of ATOA. Furthermore, the different variants of the ATOA optimization technique are used to obtain the controller parameters for the real-time pressure process plant to investigate its performance. The obtained results have shown a remarkable performance improvement compared with the existing algorithms.


Assuntos
Algoritmos
8.
Sensors (Basel) ; 21(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34372210

RESUMO

Industrialization has led to a huge demand for a network control system to monitor and control multi-loop processes with high effectiveness. Due to these advancements, new industrial wireless sensor network (IWSN) standards such as ZigBee, WirelessHART, ISA 100.11a wireless, and Wireless network for Industrial Automation-Process Automation (WIA-PA) have begun to emerge based on their wired conventional structure with additional developments. This advancement improved flexibility, scalability, needed fewer cables, reduced the network installation and commissioning time, increased productivity, and reduced maintenance costs compared to wired networks. On the other hand, using IWSNs for process control comes with the critical challenge of handling stochastic network delays, packet drop, and external noises which are capable of degrading the controller performance. Thus, this paper presents a detailed study focusing only on the adoption of WirelessHART in simulations and real-time applications for industrial process monitoring and control with its crucial challenges and design requirements.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Automação , Indústrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...