Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Transl Psychiatry ; 13(1): 273, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524707

RESUMO

The endocannabinoid system (ECS) plays a key modulatory role during synaptic plasticity and homeostatic processes in the brain and has an important role in the neurobiological processes underlying drug addiction. We have previously shown that an elevated ECS response to psychostimulant (cocaine) is involved in regulating the development and expression of cocaine-conditioned reward and sensitization. We therefore hypothesized that drug-induced elevation in endocannabinoids (eCBs) and/or eCB-like molecules (eCB-Ls) may represent a protective mechanism against drug insult, and boosting their levels exogenously may strengthen their neuroprotective effects. Here, we determine the involvement of ECS in alcohol addiction. We first measured the eCBs and eCB-Ls levels in different brain reward system regions following chronic alcohol self-administration using LC-MS. We have found that following chronic intermittent alcohol consumption, N-oleoyl glycine (OlGly) levels were significantly elevated in the prefrontal cortex (PFC), and N-oleoyl alanine (OlAla) was significantly elevated in the PFC, nucleus accumbens (NAc) and ventral tegmental area (VTA) in a region-specific manner. We next tested whether exogenous administration of OlGly or OlAla would attenuate alcohol consumption and preference. We found that systemic administration of OlGly or OlAla (60 mg/kg, intraperitoneal) during intermittent alcohol consumption significantly reduced alcohol intake and preference without affecting the hedonic state. These findings suggest that the ECS negatively regulates alcohol consumption and boosting selective eCBs exogenously has beneficial effects against alcohol consumption and potentially in preventing relapse.


Assuntos
Cocaína , Glicina , Camundongos , Animais , Glicina/farmacologia , Glicina/metabolismo , Etanol/metabolismo , Encéfalo , Núcleo Accumbens , Recompensa , Área Tegmentar Ventral
2.
Transl Psychiatry ; 12(1): 460, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319619

RESUMO

Recent evidence links synaptic plasticity and mRNA translation, via the eukaryotic elongation factor 2 kinase (eEF2K) and its only known substrate, eEF2. However, the involvement of the eEF2 pathway in cocaine-induced neuroadaptations and cocaine-induced behaviours is not known. Knock-in (KI) mice and shRNA were used to globally and specifically reduce eEF2K expression. Cocaine psychomotor sensitization and conditioned place preference were used to evaluate behavioural outcome. Changes in eEF2 phosphorylation were determined by western blot analyses. No effect was observed on the AMPA/NMDA receptor current ratio in the ventral tegmental area, 24 h after cocaine injection in eEF2K-KI mice compared with WT. However, development and expression of cocaine psychomotor sensitization were decreased in KI mice. Phosphorylated eEF2 was decreased one day after psychomotor sensitization and returned to baseline at seven days in the nucleus accumbens (NAc) of WT mice, but not in eEF2K-KI mice. However, one day following cocaine challenge, phosphorylated eEF2 decreased in WT but not KI mice. Importantly, specific targeting of eEF2K expression by shRNA in the NAc decreased cocaine condition place preference. These results suggest that the eEF2 pathway play a role in cocaine-induced locomotor sensitization and conditioned place preference.


Assuntos
Cocaína , Quinase do Fator 2 de Elongação , Animais , Camundongos , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Cocaína/farmacologia , RNA Interferente Pequeno/metabolismo , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Condicionamento Clássico , Fosforilação , Núcleo Accumbens/metabolismo
3.
J Mol Neurosci ; 71(11): 2229-2236, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33479915

RESUMO

Among the neuroadaptations underlying the expression of cocaine-induced behaviors are modifications in glutamate-mediated signaling and synaptic plasticity via activation of mitogen-activated protein kinases (MAPKs) within the nucleus accumbens (NAc). We hypothesized that exposure to cocaine leads to alterations in MAPK signaling in NAc neurons, which facilitates changes in the glutamatergic system and thus behavioral changes. We have previously shown that following withdrawal from cocaine-induced behavioral sensitization (BS), an increase in glutamate receptor expression and elevated MAPK signaling was evident. Here, we set out to determine the time course and behavioral consequences of inhibition of extracellular signal-regulated kinase (ERK) or NMDA receptors following withdrawal from BS. We found that inhibiting ERK by microinjection of U0126 into the NAc at 1 or 6 days following withdrawal from BS did not affect the expression of BS when challenged with cocaine at 14 days. However, inhibition of ERK 1 day before the cocaine challenge abolished the expression of BS. We also inhibited NR2B-containing NMDA receptors in the NAc by microinjection of ifenprodil into the NAc following withdrawal from BS, which had no effect on the expression of BS. However, microinjection of ifenprodil to the NAc 1 day before challenge attenuated the expression of BS similar to ERK inhibition. These results suggest that following a prolonged period of withdrawal, NR2B-containing NMDA receptors and ERK activity play a critical role in the expression of cocaine behavioral sensitization.


Assuntos
Cocaína/efeitos adversos , Sistema de Sinalização das MAP Quinases , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Comportamento Animal , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia
4.
Nat Commun ; 11(1): 3688, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703948

RESUMO

Zeta inhibitory peptide (ZIP), a PKMζ inhibitor, is widely used to interfere with the maintenance of acquired memories. ZIP is able to erase memory even in the absence of PKMζ, via an unknown mechanism. We found that ZIP induces redistribution of the AMPARGluA1 in HEK293 cells and primary cortical neurons, and decreases AMPAR-mediated currents in the nucleus accumbens (NAc). These effects were mimicked by free arginine or by a modified ZIP in which all but the arginine residues were replaced by alanine. Redistribution was blocked by a peptidase-resistant version of ZIP and by treatment with the nitric oxide (NO)-synthase inhibitor L-NAME. ZIP increased GluA1-S831 phosphorylation and ZIP-induced redistribution was blocked by nitrosyl-mutant GluA1-C875S or serine-mutant GluA1-S831A. Introducing the cleavable arginine-alanine peptide into the NAc attenuated expression of cocaine-conditioned reward. Together, these results suggest that ZIP may act as an arginine donor, facilitating NO-dependent downregulation of AMPARs, thereby attenuating learning and memory.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Lipopeptídeos/farmacologia , Memória de Longo Prazo/efeitos dos fármacos , Óxido Nítrico/metabolismo , Receptores de AMPA/metabolismo , Animais , Cocaína/administração & dosagem , Regulação para Baixo , Endocitose/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células HEK293 , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Modelos Animais , NG-Nitroarginina Metil Éster/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Óxido Nítrico/antagonistas & inibidores , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Fosforilação , Cultura Primária de Células , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Receptores de AMPA/genética , Recompensa , Técnicas Estereotáxicas
5.
Methods Mol Biol ; 2068: 269-274, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31576533

RESUMO

Use of biological toxins from different kinds is widely accepted in electrophysiological experiments. In particular, electrophysiological recordings from brain tissue slices are usually conducted with toxins to manipulate on different receptors or ion channels. Here we describe usage of toxins in electrophysiological experiments in acute brain slices.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Animais , Eletrofisiologia/métodos , Técnicas In Vitro , Canais Iônicos/metabolismo , Camundongos , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Ratos , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...