Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 106(6): 1017-1023, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33743019

RESUMO

In this work, reduced graphene oxide/double-walled carbon nanotubes/octahedral-Fe3O4/chitosan composite material modified screen-printed gold electrodes (rGO/DWCNTs/Oct-Fe3O4/Cs/SPAuE) under inhibition of urease enzyme was developed for the determination of glyphosate (GLY). The electrochemical behaviors of GLY on these electrodes were evaluated by square wave voltammetry (SWV). With the electroactive surface area is 1.7 times higher than that of bare SPAuE, the rGO/DWCNTs/Oct-Fe3O4/Cs/SPAuE for detection of GLY shows a low detection limit (LOD) of ~ 0.08 ppb in a large concentration range of 0.1-1000 ppb. Moreover, it is also successfully applied to the determination of GLY in river water samples with recoveries and relative standard deviations (RSDs) from 98.7% to 106.9% and from 0.79% to 0.87%, respectively. The developed composite will probably provide an universal electrochemical sensing platform that is very promising for environmental monitoring.


Assuntos
Quitosana , Grafite , Nanotubos de Carbono , Técnicas Eletroquímicas , Eletrodos , Glicina/análogos & derivados , Limite de Detecção , Glifosato
2.
J Hazard Mater ; 400: 123185, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32563905

RESUMO

In this work, we demonstrate the preparation of hybrid thin films based on double-walled carbon nanotubes and graphene for electrochemical sensing applications. The hybrid films were synthesized on polycrystalline copper foil by thermal chemical vapor deposition under low pressure. This carbonaceous hybrid film has exhibited high transparency with a transmittance of 94.3 %. The occurrence of this hybrid material on the electrode surface of screen-printed electrodes was found to increase electroactive surface area by 1.4 times, whereas electrochemical current was enhanced by 2.4 times. Such a highly transparent and conductive hybrid film was utilized as a transducing platform of enzymatic electrochemical arsenic(V) sensor. The as-prepared sensor shows the linear detection of arsenic(V) in the range from 1 to 10 ppb, with a limit of detection as low as 0.287 ppb. These findings provide a promising approach to develop new multifunctional electrochemical sensing systems for environmental monitoring and biomedical diagnostics.

3.
Colloids Surf B Biointerfaces ; 88(2): 764-70, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21907551

RESUMO

A voltammetric method based on a combination of incorporated Nafion, single-walled carbon nanotubes and poly(3-methylthiophene) film-modified glassy carbon electrode (NF/SWCNT/PMT/GCE) has been successfully developed for selective determination of dopamine (DA) in the ternary mixture of dopamine, ascorbic acid (AA) and uric acid (UA) in 0.1M phosphate buffer solution (PBS) pH 4. It was shown that to detect DA from binary DA-AA mixture, the use of NF/PMT/GCE was sufficient, but to detect DA from ternary DA-AA-UA mixture NF/SWCNT/PMT/GCE was required. The later modified electrode exhibits superior electrocatalytic activity towards AA, DA and UA thanks to synergic effect of NF/SWCNT (combining unique properties of SWCNT such as high specific surface area, electrocatalytic and adsorptive properties, with the cation selectivity of NF). On the surface of NF/SWCNT/PMT/GCE AA, DA, UA were oxidized respectively at distinguishable potentials of 0.15, 0.37 and 0.53 V (vs. Ag/AgCl), to form well-defined and sharp peaks, making possible simultaneous determination of each compound. Also, it has several advantages, such as simple preparation method, high sensitivity, low detection limit and excellent reproducibility. Thus, the proposed NF/SWCNT/PMT/GCE could be advantageously employed for the determination of DA in real pharmaceutical formulations.


Assuntos
Ácido Ascórbico/química , Dopamina/análise , Eletroquímica/métodos , Eletrodos , Nanotubos de Carbono/química , Polímeros/química , Tiofenos/química , Ácido Úrico/química , Dopamina/química , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...