Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 1055430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699022

RESUMO

Metabolic syndrome is considered the precursor of type 2 diabetes mellitus. Tuberculosis is a leading infection that constitutes a global threat remaining a major cause of morbi-mortality in developing countries. People with type 2 diabetes mellitus are more likely to suffer from infection with Mycobacterium tuberculosis. For both type 2 diabetes mellitus and tuberculosis, there is pulmonary production of anti-inflammatory glucocorticoids mediated by the enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1). The adrenal hormone dehydroepiandrosterone (DHEA) counteracts the glucocorticoid effects of cytokine production due to the inhibition of 11ß-HSD1. Late advanced tuberculosis has been associated with the suppression of the Th1 response, evidenced by a high ratio of cortisol/DHEA. In a murine model of metabolic syndrome, we determined whether DHEA treatment modifies the pro-inflammatory cytokines due to the inhibition of the 11ß-HSD1 expression. Since macrophages express 11ß-HSD1, our second goal was incubating them with DHEA and Mycobacterium tuberculosis to show that the microbicide effect was increased by DHEA. Enoyl-acyl carrier protein reductase (InhA) is an essential enzyme of Mycobacterium tuberculosis involved in the mycolic acid synthesis. Because 11ß-HSD1 and InhA are members of a short-chain dehydrogenase/reductase family of enzymes, we hypothesize that DHEA could be an antagonist of InhA. Our results demonstrate that DHEA has a direct microbicide effect against Mycobacterium tuberculosis; this effect was supported by in silico docking analysis and the molecular dynamic simulation studies between DHEA and InhA. Thus, DHEA increases the production of pro-inflammatory cytokines in the lung, inactivates GC by 11ß-HSD1, and inhibits mycobacterial InhA. The multiple functions of DHEA suggest that this hormone or its synthetic analogs could be an efficient co-adjuvant for tuberculosis treatment.


Assuntos
Anti-Infecciosos , Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Mycobacterium tuberculosis , Tuberculose , Humanos , Camundongos , Animais , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Desidroepiandrosterona/uso terapêutico , Glucocorticoides/metabolismo , Comorbidade , Tuberculose/tratamento farmacológico , Citocinas
2.
Arch Med Res ; 47(4): 262-70, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27664485

RESUMO

BACKGROUND AND AIMS: Tuberculosis (TB) is a major worldwide health problem in part due to the lack of new drugs and the emergence of multidrug-resistant strains (MDR). The aim of this study was to select anti-tuberculosis drug candidates from a collection of 69 synthetic sphingosine-ethambutol analogues through in vitro and in vivo evaluations. METHODS: The 69 compounds were evaluated in vitro against two Mycobacterium tuberculosis strains, a drug susceptible (H37Rv) and a MDR clinical isolate (CIBIN-99). Four selected compounds, those that exhibited the highest potency in vitro, were tested in vivo using a model of progressive TB in BALB/c mice infected with the drug susceptible strain, either alone or combined with conventional chemotherapy, as well as in mice infected with the MDR strain. The acute toxicity was evaluated on male and female adult BALB/c mice. RESULTS: Ten of the evaluated compounds resulted more potent in vitro than ethambutol. The experimental compound 2b (2-aminopalmitol benzyl ether) was the most efficacious and also showed additive effects in combination with conventional chemotherapy. It did not exhibit toxicity (LD50 >2000 mg/kg). CONCLUSIONS: Compound 2b can be considered as a new drug candidate to continue its development against M. tuberculosis MDR strains.


Assuntos
Antituberculosos/farmacologia , Etambutol/análogos & derivados , Etambutol/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Farmacorresistência Bacteriana Múltipla , Etambutol/química , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/isolamento & purificação , Esfingosina/química , Esfingosina/farmacologia , Relação Estrutura-Atividade , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...