Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838885

RESUMO

Targeting cancer cells that are highly dependent on the nicotinamide adenine dinucleotide (NAD+) metabolite is a promising therapeutic strategy. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme catalyzing NAD+ production. Despite the high efficacy of several developed NAMPT inhibitors (i.e., FK866 (APO866)) in preclinical studies, their clinical activity was proven to be limited. Here, we report the synthesis of new NAMPT Inhibitors, JJ08, FEI191 and FEI199, which exhibit a broad anticancer activity in vitro. Results show that these compounds are potent NAMPT inhibitors that deplete NAD+ and NADP(H) after 24 h of drug treatment, followed by an increase in reactive oxygen species (ROS) accumulation. The latter event leads to ATP loss and mitochondrial depolarization with induction of apoptosis and necrosis. Supplementation with exogenous NAD+ precursors or catalase (ROS scavenger) abrogates the cell death induced by the new compounds. Finally, in vivo administration of the new NAMPT inhibitors in a mouse xenograft model of human Burkitt lymphoma delays tumor growth and significantly prolongs mouse survival. The most promising results are collected with JJ08, which completely eradicates tumor growth. Collectively, our findings demonstrate the efficient anticancer activity of the new NAMPT inhibitor JJ08 and highlight a strong interest for further evaluation of this compound in hematological malignancies.


Assuntos
Inibidores Enzimáticos , Neoplasias Hematológicas , Nicotinamida Fosforribosiltransferase , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Neoplasias Hematológicas/tratamento farmacológico , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Espécies Reativas de Oxigênio
2.
Eur J Med Chem ; 250: 115170, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36787658

RESUMO

Cancer cells are highly dependent on Nicotinamide phosphoribosyltransferase (NAMPT) activity for proliferation, therefore NAMPT represents an interesting target for the development of anti-cancer drugs. Several compounds, such as FK866 and CHS828, were identified as potent NAMPT inhibitors with strong anti-cancer activity, although none of them reached the late stages of clinical trials. We present herein the preparation of three libraries of new inhibitors containing (pyridin-3-yl)triazole, (pyridin-3-yl)thiourea and (pyridin-3/4-yl)cyanoguanidine as cap/connecting unit and a furyl group at the tail position of the compound. Antiproliferative activity in vitro was evaluated on a panel of solid and haematological cancer cell lines and most of the synthesized compounds showed nanomolar or sub-nanomolar cytotoxic activity in MiaPaCa-2 (pancreatic cancer), ML2 (acute myeloid leukemia), JRKT (acute lymphobalistic leukemia), NMLW (Burkitt lymphoma), RPMI8226 (multiple myeloma) and NB4 (acute myeloid leukemia), with lower IC50 values than those reported for FK866. Notably, compounds 35a, 39a and 47 showed cytotoxic activity against ML2 with IC50 = 18, 46 and 49 pM, and IC50 towards MiaPaCa-2 of 0.005, 0.455 and 2.81 nM, respectively. Moreover, their role on the NAD+ synthetic pathway was demonstrated by the NAMPT inhibition assay. Finally, the intracellular NAD+ depletion was confirmed in vitro to induced ROS accumulation that cause a time-dependent mitochondrial membrane depolarization, leading to ATP loss and cell death.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Leucemia , Humanos , Nicotinamida Fosforribosiltransferase/metabolismo , NAD/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Antineoplásicos/farmacologia , Leucemia/metabolismo , Relação Estrutura-Atividade , Neoplasias Hematológicas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia
3.
Cancers (Basel) ; 15(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36765744

RESUMO

Targeting NAD depletion in cancer cells has emerged as an attractive therapeutic strategy for cancer treatment, based on the higher reliance of malignant vs. healthy cells on NAD to sustain their aberrant proliferation and altered metabolism. NAD depletion is exquisitely observed when NAMPT, a key enzyme for the biosynthesis of NAD, is inhibited. Growing evidence suggests that alternative NAD sources present in a tumor environment can bypass NAMPT and render its inhibition ineffective. Here, we report the identification of nicotinaldehyde as a novel precursor that can be used for NAD biosynthesis by human leukemia cells. Nicotinaldehyde supplementation replenishes the intracellular NAD level in leukemia cells treated with NAMPT inhibitor APO866 and prevents APO866-induced oxidative stress, mitochondrial dysfunction and ATP depletion. We show here that NAD biosynthesis from nicotinaldehyde depends on NAPRT and occurs via the Preiss-Handler pathway. The availability of nicotinaldehyde in a tumor environment fully blunts the antitumor activity of APO866 in vitro and in vivo. This is the first study to report the role of nicotinaldehyde in the NAD-targeted anti-cancer treatment, highlighting the importance of the tumor metabolic environment in modulating the efficacy of NAD-lowering cancer therapy.

4.
Cell Death Dis ; 13(4): 320, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396381

RESUMO

Most cancer cells have high need for nicotinamide adenine dinucleotide (NAD+) to sustain their survival. This led to the development of inhibitors of nicotinamide (NAM) phosphoribosyltransferase (NAMPT), the rate-limiting NAD+ biosynthesis enzyme from NAM. Such inhibitors kill cancer cells in preclinical studies but failed in clinical ones. To identify parameters that could negatively affect the therapeutic efficacy of NAMPT inhibitors and propose therapeutic strategies to circumvent such failure, we performed metabolomics analyses in tumor environment and explored the effect of the interaction between microbiota and cancer cells. Here we show that tumor environment enriched in vitamin B3 (NAM) or nicotinic acid (NA) significantly lowers the anti-tumor efficacy of APO866, a prototypic NAMPT inhibitor. Additionally, bacteria (from the gut, or in the medium) can convert NAM into NA and thus fuel an alternative NAD synthesis pathway through NA. This leads to the rescue from NAD depletion, prevents reactive oxygen species production, preserves mitochondrial integrity, blunts ATP depletion, and protects cancer cells from death.Our data in an in vivo preclinical model reveal that antibiotic therapy down-modulating gut microbiota can restore the anti-cancer efficacy of APO866. Alternatively, NAphosphoribosyltransferase inhibition may restore anti-cancer activity of NAMPT inhibitors in the presence of gut microbiota and of NAM in the diet.


Assuntos
Microbioma Gastrointestinal , Leucemia , Neoplasias , Linhagem Celular Tumoral , Citocinas/metabolismo , Humanos , NAD/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Nicotinamida Fosforribosiltransferase/metabolismo
5.
Front Microbiol ; 11: 2106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983067

RESUMO

Our objective was to study the bacterial community changes that determine enhanced removal of petroleum hydrocarbons from soils subjected to bioaugmentation with the hydrocarbon-degrading strains Rhodococcus erythropolis CD 130, CD 167, and their combination. To achieve this, a high-throughput sequencing of the 16S rRNA gene was performed. The changes in the bacterial community composition were most apparent the day after bacterial inoculation. These changes represented an increase in the percentage abundance of Rhodococcus and Pseudomonas genera. Surprisingly, members of the Rhodococcus genus were not present after day 91. At the end of the experiment, the bacterial communities from the CD 130, CD 167, and control soils had a similar structure. Nevertheless, the composition of the bacteria in the CD 130 + CD 167 soil was still distinct from the control. Metagenomic predictions from the 16S rRNA gene sequences showed that the introduction of bacteria had a significant influence on the predicted pathways (metabolism of xenobiotics, lipids, terpenoids, polyketides, and amino acids) on day one. On day 182, differences in the abundance of functional pathways were also detected in the CD 130 and CD 130 + CD 167 soils. Additionally, we observed that on day one, in all bioaugmented soils, the alkH gene was mainly contributed by the Rhodococcus and Mycobacterium genera, whereas in non-treated soil, this gene was contributed only by the Mycobacterium genus. Interestingly, from day 91, the Mycobacterium genus was the main contributor for the tested genes in all studied soils. Our results showed that hydrocarbon depletion from the analyzed soils resulted from the activity of the autochthonous bacteria. However, these changes in the composition and function of the indigenous bacterial community occurred under the influence of the introduced bacteria.

6.
Int J Nanomedicine ; 12: 3839-3849, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28572728

RESUMO

A newly produced hierarchical, nanoporous carbon (HNC) material is studied for the first time in a biological model. The material consists of uniform particles and is characterized by a mean diameter <150 nm, a high specific surface area of 1,000 m2/g, well-developed porosity, and high electrical conductivity. These unique properties and ability to transfer charge create a possibility of employing HNC as a moderator of tumor cell growth. As the charge of HNC may interfere with cell membranes by adhesion and by bonding with cell receptors, it may block the supply of nutrients. The interactions of HNC with the U87 cells can also lead to the excessive generation of reactive oxygen species (ROS) and activate apoptotic mechanisms in cancer cells. The investigation was performed using U87 human glioblastoma and PCS-201-010 normal fibroblast cell lines, where cell morphology and ultrastructure, viability, ROS production, type of cell death, mitochondrial transmembrane potential, and the expression of genes engaged in apoptosis pathways are studied. The results demonstrate that cytotoxicity of HNC particles increases with concentration from 5 to 100 µg/mL by activation of apoptosis through the mitochondrial pathway, without inducing necrosis. Our research indicates the potential applicability of HNC in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Carbono/farmacologia , Glioblastoma/tratamento farmacológico , Nanoporos , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carbono/química , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Nanoporos/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...