Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38018851

RESUMO

During demyelination, lipid-rich myelin debris is released in the central nervous system (CNS) and must be phagocytosed and processed before new myelin can form. Although myelin comprises over 70% lipids, relatively little is known about how the CNS lipidome changes during demyelination and remyelination. In this study, we obtained a longitudinal lipidomic profile of the brain, spinal cord, and serum using a genetic mouse model of demyelination, known as Plp1-iCKO-Myrf. The mass spectrometry data is available at the Metabolomics Workbench, where it has been assigned Study ID ST002958. This model has distinct phases of demyelination and remyelination over the course of 24 weeks, in which loss of motor function peaks during demyelination. Using principal component analysis (PCA) and volcano plots, we have demonstrated that the brain and spinal cord have different remyelination capabilities and that this is reflected in different lipidomic profiles over time. We observed that plasmalogens (ether-linked phosphatidylserine and ether-linked phosphatidylcholine) were elevated specifically during the early stages of active demyelination. In addition, we identified lipids in the brain that were altered when mice were treated with a remyelinating drug, which may be CNS biomarkers of remyelination. The results of this study provide new insights into how the lipidome changes in response to demyelination, which will enable future studies to elucidate mechanisms of lipid regulation during demyelination and remyelination.

2.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546864

RESUMO

During demyelination, lipid-rich myelin debris is released in the central nervous system (CNS) and must be phagocytosed and processed before new myelin can form. Although myelin comprises over 70% lipids, relatively little is known about how the CNS lipidome changes during demyelination and remyelination. In this study, we obtained a longitudinal lipidomic profile of the brain, spinal cord, and serum using a genetic mouse model of demyelination, known as Plp1 -iCKO- Myrf mice. This model has distinct phases of demyelination and remyelination over the course of 24 weeks, in which loss of motor function peaks during demyelination. Using principal component analysis (PCA) and volcano plots, we have demonstrated that the brain and spinal cord have different remyelination capabilities and that this is reflected in different lipidomic profiles over time. We observed that plasmalogens (ether-linked phosphatidylserine and ether-linked phosphatidylcholine) were elevated specifically during the early stages of active demyelination. In addition, we identified lipids in the brain that were altered when mice were treated with a remyelinating drug, which may be CNS biomarkers of remyelination. The results of this study provide new insights into how the lipidome changes in response to demyelination, which will enable future studies to elucidate mechanisms of lipid regulation during demyelination and remyelination.

3.
Virology ; 575: 101-110, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36096069

RESUMO

Respiratory syncytial virus is an important cause of pneumonia in children, the elderly, and immunocompromised individuals. The attachment (G) protein of RSV generates neutralizing antibodies in natural RSV infection which correlate with protection against disease. The immune response to RSV is typically short-lived, which may be related to the heavy glycosylation of RSV-G. In order to improve its immunogenicity, we expressed G protein mutants in a vesicular stomatitis virus (VSV) vector system and tested their ability to protect cotton rats from RSV challenge. We found that the most protective construct was codon-optimized RSV-G, followed by wild-type G and membrane-bound G. Constructs which expressed the G protein with reduced glycosylation or the secreted G protein provided either partial or no protection. Our results demonstrate that modifications to the G protein are not advantageous in a VSV vector system, and that an intact, codon-optimized G is a superior vaccine candidate.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Estomatite Vesicular , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Códon , Proteínas de Ligação ao GTP , Imunidade , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Sigmodontinae , Vírus da Estomatite Vesicular Indiana , Vesiculovirus/genética , Proteínas Virais de Fusão/genética
4.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33408176

RESUMO

Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract (LRT) infections, with increased severity in high-risk human populations, such as infants, the immunocompromised, and the elderly. Although the virus was identified more than 60 years ago, there is still no licensed vaccine available. Over the years, several vaccine delivery strategies have been evaluated. In this study, we developed two recombinant vesicular stomatitis virus (rVSV) vector-based vaccine candidates expressing the RSV-G (attachment) protein (rVSV-G) or F (fusion) protein (rVSV-F). All vectors were evaluated in the cotton rat animal model for their in vivo immunogenicity and protective efficacy against an RSV-A2 virus challenge. Intranasal (i.n.) delivery of rVSV-G and rVSV-F together completely protected the lower respiratory tract (lungs) at doses as low as 103 PFU. In contrast, doses greater than 106 PFU were required to protect the upper respiratory tract (URT) completely. Reimmunization of RSV-immune cotton rats was most effective with rVSV-F. In immunized animals, overall antibody responses were sufficient for protection, whereas CD4 and CD8 T cells were not necessary. A prime-boost immunization regimen increased both protection and neutralizing antibody titers. Overall, mucosally delivered rVSV-vector-based RSV vaccine candidates induce protective immunity and therefore represent a promising immunization regimen against RSV infection.IMPORTANCE Even after decades of intensive research efforts, a safe and efficacious RSV vaccine remains elusive. Expression of heterologous antigens from rVSV vectors has demonstrated several practical and safety advantages over other virus vector systems and live attenuated vaccines. In this study, we developed safe and efficacious vaccine candidates by expressing the two major immunogenic RSV surface proteins in rVSV vectors and delivering them mucosally in a prime-boost regimen. The main immune parameter responsible for protection was the antibody response. These vaccine candidates induced complete protection of both the upper and lower respiratory tracts.


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vírus Sincicial Respiratório Humano/imunologia , Vesiculovirus/genética , Proteínas do Envelope Viral/imunologia , Proteínas Virais de Fusão/imunologia , Administração através da Mucosa , Animais , Modelos Animais de Doenças , Vetores Genéticos , Imunidade Celular , Imunidade Humoral , Imunização , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/genética , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Sigmodontinae , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vesiculovirus/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...