Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(11): 226, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847385

RESUMO

KEY MESSAGE: Lack of function of a D-genome adult plant resistance gene upon introgression into durum wheat. The wheat Lr34/Yr18/Sr57/Pm38/Ltn1 adult plant resistance gene (Lr34), located on chromosome arm 7DS, provides broad spectrum, partial, adult plant resistance to leaf rust, stripe rust, stem rust and powdery mildew. It has been used extensively in hexaploid bread wheat (AABBDD) and conferred durable resistance for many decades. These same diseases also occur on cultivated tetraploid durum wheat and emmer wheat but transfer of D genome sequences to those subspecies is restricted due to very limited intergenomic recombination. Herein we have introgressed the Lr34 gene into chromosome 7A of durum wheat. Durum chromosome substitution line Langdon 7D(7A) was crossed to Cappelli ph1c, a mutant derivative of durum cultivar Cappelli homozygous for a deletion of the chromosome pairing locus Ph1. Screening of BC1F2 plants and their progeny by KASP and PCR markers, 90 K SNP genotyping and cytology identified 7A chromosomes containing small chromosome 7D fragments encoding Lr34. However, in contrast to previous transgenesis experiments in durum wheat, resistance to wheat stripe rust was not observed in either Cappelli/Langdon 7D(7A) or Bansi durum plants carrying this Lr34 encoding segment due to low levels of Lr34 gene expression.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Pão , Genes de Plantas , Plantas/genética , Doenças das Plantas/genética , Resistência à Doença/genética
2.
J Exp Bot ; 64(7): 1907-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23630325

RESUMO

The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8'-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0-2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions.


Assuntos
Ácido Abscísico/metabolismo , Irrigação Agrícola , Vitis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...