Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Exp Biol ; 227(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819376

RESUMO

The maximum rate at which animals take up oxygen from their environment (MO2,max) is a crucial aspect of their physiology and ecology. In fishes, MO2,max is commonly quantified by measuring oxygen uptake either during incremental swimming tests or during recovery from an exhaustive chase. In this Commentary, we compile recent studies that apply both techniques to the same fish and show that the two methods typically yield different mean estimates of MO2,max for a group of individuals. Furthermore, within a group of fish, estimates of MO2,max determined during swimming are poorly correlated with estimates determined during recovery from chasing (i.e. an individual's MO2,max is not repeatable across methods). One explanation for the lack of agreement is that these methods measure different physiological states, each with their own behavioural, anatomical and biochemical determinants. We propose that these methods are not directly interchangeable but, rather, each is suited to address different questions in fish biology. We suggest that researchers select the method that reflects the biological contexts of their study, and we advocate for the use of accurate terminology that acknowledges the technique used to elevate MO2 (e.g. peak MO2,swim or peak MO2,recovery). If the study's objective is to estimate the 'true' MO2,max of an individual or species, we recommend that pilot studies compare methods, preferably using repeated-measures designs. We hope that these recommendations contribute new insights into the causes and consequences of variation in MO2,max within and among fish species.


Assuntos
Peixes , Consumo de Oxigênio , Natação , Animais , Natação/fisiologia , Peixes/fisiologia , Peixes/metabolismo , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo
2.
Conserv Physiol ; 12(1): coae015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629117

RESUMO

Wild ectotherms are exposed to multiple stressors, including parasites, that can affect their responses to environmental change. Simultaneously, unprecedented warm temperatures are being recorded worldwide, increasing both the average and maximum temperatures experienced in nature. Understanding how ectotherms, such as fishes, will react to the combined stress of parasites and higher average temperatures can help predict the impact of extreme events such as heat waves on populations. The critical thermal method (CTM), which assesses upper (CTmax) and lower (CTmin) thermal tolerance, is often used in acclimated ectotherms to help predict their tolerance to various temperature scenarios. Despite the widespread use of the CTM across taxa, few studies have characterized the response of naturally infected fish to extreme temperature events or how acute thermal stress affects subsequent survival. We acclimated naturally infected pumpkinseed sunfish (Lepomis gibbosus) to four ecologically relevant temperatures (10, 15, 20 and 25°C) and one future warming scenario (30°C) for 3 weeks before measuring CTmax and CTmin. We also assessed individual survival the week following CTmax. Parasites were counted and identified following trials to relate infection intensity to thermal tolerance and survival. Interestingly, trematode parasites causing black spot disease were negatively related to CTmax, suggesting that heavily infected fish are less tolerant to acute warming. Moreover, fish infected with yellow grub parasites showed decreased survival in the days following CTmax implying that the infection load has negative survival consequences on sunfish during extreme warming events. Our findings indicate that, when combined, parasite infection and high prolonged average temperatures can affect fish thermal tolerance and survival, emphasizing the need to better understand the concomitant effects of stressors on health outcomes in wild populations. This is especially true given that some parasite species are expected to thrive in warming waters making host fish species especially at risk.

3.
Ecol Lett ; 26(11): 1987-2002, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37706582

RESUMO

Animal migration impacts organismal health and parasite transmission: migrants are simultaneously exposed to parasites and able to reduce infection for both individuals and populations. However, these dynamics are difficult to study; empirical studies reveal disparate results while existing theory makes assumptions that simplify natural complexity. Here, we systematically review empirical studies of migration and infection across taxa, highlighting key gaps in our understanding. Next, we develop a unified evolutionary framework incorporating different selective pressures of parasite-migration interactions while accounting for ecological complexity that goes beyond previous theory. Our framework generates diverse migration-infection patterns paralleling those seen in empirical systems, including partial and differential migration. Finally, we generate predictions about which mechanisms dominate which empirical systems to guide future studies. Our framework provides an overarching understanding of selective pressures shaping migration patterns in the context of animal health and disease, which is critical for predicting how environmental change may threaten migration.


Assuntos
Parasitos , Doenças Parasitárias , Humanos , Animais , Migração Animal , Ecossistema , Evolução Biológica
4.
Conserv Physiol ; 11(1): coad061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565236

RESUMO

Aquatic ectotherms are vulnerable to thermal stress, with embryos predicted to be more sensitive than juveniles and adults. When examining the vulnerability of species and life stages to warming, comparable methodology must be used to obtain robust conclusions. Critical thermal methodology is commonly used to characterize acute thermal tolerances in fishes, with critical thermal maximum (CTmax) referring to the acute upper thermal tolerance limit. At this temperature, fish exhibit loss of controlled locomotion due to a temperature-induced collapse of vital physiological functions. While it is relatively easy to monitor behavioural responses and measure CTmax in larval and adult fish, this is more challenging in embryos, leading to a lack of data on this life stage, or that studies rely on potentially incomparable metrics. Here, we present a novel method for measuring CTmax in fish embryos, defined by the temperature at which embryos stop moving. Additionally, we compare this measurement with the temperature of the embryos' last heartbeat, which has previously been proposed as a method for measuring embryonic CTmax. We found that, like other life stages, late-stage embryos exhibited a period of increased activity, peaking approximately 2-3°C before CTmax. Measurements of CTmax based on last movement are more conservative and easier to record in later developmental stages than measurements based on last heartbeat, and they also work well with large and small embryos. Importantly, CTmax measurements based on last movement in embryos are similar to measurements from larvae and adults based on loss of locomotory control. Using last heartbeat as CTmax in embryos likely overestimates acute thermal tolerance, as the heart is still beating when loss of response/equilibrium is reached in larvae/adults. The last movement technique described here allows for comparisons of acute thermal tolerance of embryos between species and across life stages, and as a response variable to treatments.

5.
Physiol Biochem Zool ; 96(4): 247-259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418607

RESUMO

AbstractParasites can affect host behavior, cognition, locomotion, body condition, and many other physiological traits. Changes to host aerobic metabolism may be responsible for these parasite-induced performance alterations. Whole-organism metabolic rate is underpinned by cellular energy metabolism driven most prominently by mitochondria. However, few studies have explored how mitochondrial enzymatic activity relates to body condition and parasite infection, despite it being a putative site for metabolic disruptions related to health status. We studied correlations among natural parasite infection, host body condition, and activity of key mitochondrial enzymes in target organs from wild-caught pumpkinseed sunfish (Lepomis gibbosus) to better understand the cellular responses of fish hosts to endoparasite infection. Enzymatic activities in the gills, spleen, and brain of infected fish were not significantly related to parasite infection or host body condition. However, the activity of cytochrome c oxidase, an enzyme involved in oxidative phosphorylation, in fish hearts was higher in individuals with a lower body condition. Activities of citrate synthase, electron transport system (complexes I and III), and carnitine palmitoyltransferase were also significantly different among organ types. These results provide preliminary information regarding the likely mitochondrial pathways affecting host body condition, the maintenance energetic requirements of different organs, and the organs' specific dependency on particular mitochondrial pathways. These results help pave the way for future studies on the effects of parasite infection on mitochondrial metabolism.


Assuntos
Perciformes , Animais , Perciformes/metabolismo , Perciformes/parasitologia , Peixes , Mitocôndrias/metabolismo , Metabolismo Energético , Fenótipo
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1876): 20210506, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36934748

RESUMO

Ongoing environmental changes alter how natural selection shapes animal migration. Understanding how these changes play out theoretically can be done using evolutionary game theoretic (EGT) approaches, such as looking for evolutionarily stable strategies. Here, we first describe historical patterns of how EGT models have explored different drivers of migration. We find that there are substantial gaps in both the taxa (mammals, amphibians, reptiles, insects) and mechanisms (mutualism, interspecific competition) included in past EGT models of migration. Although enemy interactions, including parasites, are increasingly considered in models of animal migration, they remain the least studied of factors for migration considered to date. Furthermore, few papers look at changes in migration in response to perturbations (e.g. climate change, new species interactions). To address this gap, we present a new EGT model to understand how infection with a novel parasite changes host migration. We find three possible outcomes when migrants encounter novel parasites: maintenance of migration (despite the added infection cost), loss of migration (evolutionary shift to residency) or population collapse, depending on the risk and cost of getting infected, and the cost currency. Our work demonstrates how emerging infection can alter animal behaviour such as migration. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.


Assuntos
Migração Animal , Parasitos , Animais , Migração Animal/fisiologia , Modelos Teóricos , Insetos , Evolução Biológica , Teoria dos Jogos , Mamíferos
7.
J Anim Ecol ; 92(4): 794-806, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36480357

RESUMO

Wild animals have parasites. This inconvenient truth has far-reaching implications for biologists measuring animal performance traits: infection with parasites can alter host behaviour and physiology in profound and sometimes counterintuitive ways. Yet, to what extent do studies on wild animals take individual infection status into account? We performed a systematic review across eight scientific journals primarily publishing studies in animal behaviour and physiology over a 5-year period to assess the proportion of studies which acknowledge, treat or control for parasite infection in their study design and/or analyses. We explored whether parasite inclusion differed between studies that are experimental versus observational, conducted in the field vs the laboratory and measured behavioural vs physiological traits. We also investigated the importance of other factors such as the journal, the trait category (e.g. locomotion, reproduction) measured, the vertebrate taxonomic group investigated and the host climatic zone of origin. Our results show that parasite inclusion was generally lacking across recent studies on wild vertebrates. In over 680 filtered papers, we found that only 21.9% acknowledged the potential effects of infections on animal performance in the text, and only 5.1% of studies treated animals for infection (i.e. parasite control) or considered infection status in the statistical analyses (i.e. parasite analysis). Parasite inclusion, control and analysis were higher in laboratory compared to field studies and higher for physiological studies compared to behavioural studies but did not differ among journals, performance trait categories and taxonomic groups. Among climatic zones, parasite inclusion, control and analysis were higher in tropical, subtropical and temperate zones than in boreal and polar zones. Overall, our literature review suggests that parasites are sorely under-acknowledged by researchers in recent years despite growing evidence that infections can modify animal performance. Given the ubiquity of parasites in the environment, we encourage scientists to consider individual infection status when assessing performance of wild animals. We also suggest ways for researchers to implement such practices in both experimental and observational studies.


Assuntos
Parasitos , Doenças Parasitárias , Animais , Animais Selvagens , Interações Hospedeiro-Parasita , Parasitos/fisiologia , Vertebrados
8.
Proc Biol Sci ; 289(1989): 20221956, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36515121

RESUMO

Commercial fishery harvest is a powerful evolutionary agent, but we know little about whether environmental stressors affect harvest-associated selection. We test how parasite infection relates to trapping vulnerability through selective processes underlying capture. We used fish naturally infected with parasites, including trematodes causing black spots under fish skin. We first assessed how individual parasite density related to standard metabolic rate (SMR), maximum metabolic rate (MMR) and absolute aerobic scope (AAS)-then used laboratory fishing simulations to test how capture vulnerability was related to parasite density. We further explored group-trapping dynamics using experimental shoals containing varying proportions of infected fish (groups of six with either 0, 2, 4 or 6 infected individuals). At the individual level, we found a positive relationship between parasite presence and SMR, but not MMR or AAS. While we saw no relationship between individual metabolic capacity and vulnerability to trapping, we found the length of time fish spent in traps increased with increasing parasite density, a predictor of trapping-related capture probability. At the group level, the number of infected individuals in a shoal did not affect overall group trapping vulnerability. Our results suggest that parasite infection has some capacity to shift individual vulnerability patterns in fisheries, and potentially influence the evolutionary outcomes of fisheries-induced evolution.


Assuntos
Parasitos , Trematódeos , Animais , Caça , Pesqueiros
9.
Proc Biol Sci ; 289(1979): 20220938, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35855607

RESUMO

Historical and long-term environmental datasets are imperative to understanding how natural systems respond to our changing world. Although immensely valuable, these data are at risk of being lost unless actively curated and archived in data repositories. The practice of data rescue, which we define as identifying, preserving, and sharing valuable data and associated metadata at risk of loss, is an important means of ensuring the long-term viability and accessibility of such datasets. Improvements in policies and best practices around data management will hopefully limit future need for data rescue; these changes, however, do not apply retroactively. While rescuing data is not new, the term lacks formal definition, is often conflated with other terms (i.e. data reuse), and lacks general recommendations. Here, we outline seven key guidelines for effective rescue of historically collected and unmanaged datasets. We discuss prioritization of datasets to rescue, forming effective data rescue teams, preparing the data and associated metadata, and archiving and sharing the rescued materials. In an era of rapid environmental change, the best policy solutions will require evidence from both contemporary and historical sources. It is, therefore, imperative that we identify and preserve valuable, at-risk environmental data before they are lost to science.

10.
J Anim Ecol ; 91(9): 1918-1928, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35856175

RESUMO

Within the same population, proactive (i.e. bolder, more exploratory, active and aggressive) and reactive (i.e. more timid, less exploratory, less active and more passive) individuals could be hypothetically maintained due a trade-off between foraging and vigilance behaviours, provided that both phenotypes differ in their state (e.g. metabolic rates, body condition or energetic needs). Yet, recent findings indicate that among-individual variation in intrinsic state can explain only a small proportion of variation in behaviour, meaning that other mechanisms, such as the presence of trophically transmitted parasites, might contribute to maintaining inter-individual behavioural differences. Empirical evidence, indeed, suggests strong relationships between certain animal personality traits and parasitic load within host populations. However, the direction of causation between these traits remains unclear: are different behaviours in infected hosts in contrast to uninfected ones the result of manipulation by parasites to increase host predation, or are some personalities inherently more susceptible to infection than others? To better understand the role of parasites in shaping behavioural differences within host populations and examine to what extent parasite manipulation and/or intrinsic differences in parasite susceptibility contribute to maintaining behavioural differences, we used a simulation approach and analysed the change in the frequencies of proactive and reactive individuals over time under different predation and starvation scenarios, when individual phenotype either affected a host's risk of infection or not. We found that in the absence of parasites, predation pressure strongly affected the expression of host personality, but the trade-off between foraging and vigilance behaviours alone could not explain the maintenance of inter-individual behavioural differences without temporal variation in predation pressure. By contrast, in the presence of parasites, the two host phenotypes could coexist within populations even when individuals experienced no temporal variations in predation risk, but only when proactive and reactive hosts were equally susceptible to parasitism. Our findings, thus, indicate that parasites can play an important role in maintaining genetic diversity in their host populations in addition to generating behavioural differences though manipulation.


Assuntos
Parasitos , Comportamento Predatório , Animais , Comportamento Animal , Interações Hospedeiro-Parasita/genética , Personalidade , Simbiose
11.
J Exp Biol ; 225(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35818812

RESUMO

Wild animals have parasites that can compromise their physiological and/or behavioural performance. Yet, the extent to which parasite load is related to intraspecific variation in performance traits within wild populations remains relatively unexplored. We used pumpkinseed sunfish (Lepomis gibbosus) and their endoparasites as a model system to explore the effects of infection load on host aerobic metabolism and escape performance. Metabolic traits (standard and maximum metabolic rates, aerobic scope) and fast-start escape responses following a simulated aerial attack by a predator (responsiveness, response latency and escape distance) were measured in fish from across a gradient of visible (i.e. trematodes causing black spot disease counted on fish surfaces) and non-visible (i.e. cestodes in fish abdominal cavity counted post-mortem) endoparasite infection. We found that a higher infection load of non-visible endoparasites was related to lower standard and maximum metabolic rates, but not aerobic scope in fish. Non-visible endoparasite infection load was also related to decreased responsiveness of the host to a simulated aerial attack. Visible endoparasites were not related to changes in metabolic traits or fast-start escape responses. Our results suggest that infection with parasites that are inconspicuous to researchers can result in intraspecific variation in physiological and behavioural performance in wild populations, highlighting the need to more explicitly acknowledge and account for the role played by natural infections in studies of wild animal performance.


Assuntos
Perciformes , Animais , Peixes , Carga Parasitária , Perciformes/fisiologia
12.
Proc Biol Sci ; 289(1975): 20212780, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35582791

RESUMO

Many leading journals in ecology and evolution now mandate open data upon publication. Yet, there is very little oversight to ensure the completeness and reusability of archived datasets, and we currently have a poor understanding of the factors associated with high-quality data sharing. We assessed 362 open datasets linked to first- or senior-authored papers published by 100 principal investigators (PIs) in the fields of ecology and evolution over a period of 7 years to identify predictors of data completeness and reusability (data archiving quality). Datasets scored low on these metrics: 56.4% were complete and 45.9% were reusable. Data reusability, but not completeness, was slightly higher for more recently archived datasets and PIs with less seniority. Journal open data policy, PI gender and PI corresponding author status were unrelated to data archiving quality. However, PI identity explained a large proportion of the variance in data completeness (27.8%) and reusability (22.0%), indicating consistent inter-individual differences in data sharing practices by PIs across time and contexts. Several PIs consistently shared data of either high or low archiving quality, but most PIs were inconsistent in how well they shared. One explanation for the high intra-individual variation we observed is that PIs often conduct research through students and postdoctoral researchers, who may be responsible for the data collection, curation and archiving. Levels of data literacy vary among trainees and PIs may not regularly perform quality control over archived files. Our findings suggest that research data management training and culture within a PI's group are likely to be more important determinants of data archiving quality than other factors such as a journal's open data policy. Greater incentives and training for individual researchers at all career stages could improve data sharing practices and enhance data transparency and reusability.


Assuntos
Ecologia , Disseminação de Informação , Confiabilidade dos Dados , Coleta de Dados , Humanos
13.
J Exp Biol ; 225(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511083

RESUMO

Shallow or near-shore environments, such as ponds, estuaries and intertidal zones, are among the most physiologically challenging of all aquatic settings. Animals inhabiting these environments experience conditions that fluctuate markedly over relatively short temporal and spatial scales. Living in these habitats requires the ability to tolerate the physiological disturbances incurred by these environmental fluctuations. This tolerance is achieved through a suite of physiological and behavioural responses that allow animals to maintain homeostasis, including the ability to dynamically modulate their physiology through reversible phenotypic plasticity. However, maintaining the plasticity to adjust to some stresses in a dynamic environment may trade off with the capacity to deal with other stressors. This paper will explore studies on select fishes and invertebrates exposed to fluctuations in dissolved oxygen, salinity and pH. We assess the physiological mechanisms these species employ to achieve homeostasis, with a focus on the plasticity of their responses, and consider the resulting physiological trade-offs in function. Finally, we discuss additional factors that may influence organismal responses to fluctuating environments, such as the presence of multiple stressors, including parasites. We echo recent calls from experimental biologists to consider physiological responses to life in naturally fluctuating environments, not only because they are interesting in their own right but also because they can reveal mechanisms that may be crucial for living with increasing environmental instability as a consequence of climate change.


Assuntos
Adaptação Fisiológica , Salinidade , Animais , Mudança Climática , Ecossistema , Peixes
14.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258604

RESUMO

In a recent editorial, the Editors-in-Chief of Journal of Experimental Biology argued that consensus building, data sharing, and better integration across disciplines are needed to address the urgent scientific challenges posed by climate change. We agree and expand on the importance of cross-disciplinary integration and transparency to improve consensus building and advance climate change research in experimental biology. We investigated reproducible research practices in experimental biology through a review of open data and analysis code associated with empirical studies on three debated paradigms and for unrelated studies published in leading journals in comparative physiology and behavioural ecology over the last 10 years. Nineteen per cent of studies on the three paradigms had open data, and 3.2% had open code. Similarly, 12.1% of studies in the journals we examined had open data, and 3.1% had open code. Previous research indicates that only 50% of shared datasets are complete and re-usable, suggesting that fewer than 10% of studies in experimental biology have usable open data. Encouragingly, our results indicate that reproducible research practices are increasing over time, with data sharing rates in some journals reaching 75% in recent years. Rigorous empirical research in experimental biology is key to understanding the mechanisms by which climate change affects organisms, and ultimately promotes evidence-based conservation policy and practice. We argue that a greater adoption of open science practices, with a particular focus on FAIR (Findable, Accessible, Interoperable, Re-usable) data and code, represents a much-needed paradigm shift towards improved transparency, cross-disciplinary integration, and consensus building to maximize the contributions of experimental biologists in addressing the impacts of environmental change on living organisms.


Assuntos
Ecologia , Disseminação de Informação , Mudança Climática , Consenso
15.
Biol Rev Camb Philos Soc ; 97(3): 1161-1178, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35094460

RESUMO

Animal migration (round-trip, predictable movements) takes individuals across space and time, bringing them into contact with new communities of organisms. In particular, migratory movements shape (and are shaped by) the costs and risk of parasite transmission. Unfortunately, our understanding of how migration and parasite infection interact has not proceeded evenly. Although numerous conceptual frameworks (e.g. mathematical models) have been developed, most empirical evidence of migration-parasite interactions are drawn from pre-existing empirical studies that were conducted using other conceptual frameworks, which limits our understanding. Here, we synthesise and analyse existing work, and then provide a roadmap for future (especially empirical) studies. First, we synthesise the conceptual frameworks that have been developed to understand interactions between migration and parasites (e.g. migratory exposure, escape, allopatry, recovery, culling, separation, stalling and relapse). Second, we highlight current challenges to studying migration and parasites empirically, and to integrating empirical and theoretical perspectives, particularly emphasizing the challenge of feedback loops. Finally, we provide a guide to overcoming these challenges in empirical studies, using comparative, observational and experimental approaches. Beyond guiding future empirical work, this review aims to inspire stronger collaboration between empiricists and theorists studying the intersection of migration and parasite infection. Such collaboration will help overcome current limits to our understanding of how migration and parasites interact, and allow us to predict how these critical ecological processes will change in the future.


Assuntos
Parasitos , Doenças Parasitárias , Migração Animal , Animais , Interações Hospedeiro-Parasita , Modelos Teóricos
16.
J Exp Biol ; 224(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33942101

RESUMO

There is nothing like a pandemic to get the world thinking about how infectious diseases affect individual behavior. In this respect, sick animals can behave in ways that are dramatically different from healthy animals: altered social interactions and changes to patterns of eating and drinking are all hallmarks of sickness. As a result, behavioral changes associated with inflammatory responses (i.e. sickness behaviors) have important implications for disease spread by affecting contacts with others and with common resources, including water and/or sleeping sites. In this Review, we summarize the behavioral modifications, including changes to thermoregulatory behaviors, known to occur in vertebrates during infection, with an emphasis on non-mammalian taxa, which have historically received less attention. We then outline and discuss our current understanding of the changes in physiology associated with the production of these behaviors and highlight areas where more research is needed, including an exploration of individual and sex differences in the acute phase response and a greater understanding of the ecophysiological implications of sickness behaviors for disease at the population level.


Assuntos
Comportamento de Doença , Animais , Feminino , Lipopolissacarídeos , Masculino , Vertebrados
17.
Ecology ; 102(2): e03229, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098657

RESUMO

Migration can allow individuals to escape parasite infection, which can lead to a lower infection probability (prevalence) in a population and/or fewer parasites per individual (intensity). Because individuals with more parasites often have lower survival and/or fecundity, infection intensity shapes the life-history trade-offs determining when migration is favored as a strategy to escape infection. Yet, most theory relies on susceptible-infected (SI) modeling frameworks, defining individuals as either healthy or infected, ignoring details of infection intensity. Here, we develop a novel modeling approach that captures infection intensity as a spectrum, and ask under what conditions migration evolves as function of how infection intensity changes over time. We show that relative timescales of migration and infection accumulation determine when migration is favored. We also find that population-level heterogeneity in infection intensity can lead to partial migration, where less-infected individuals migrate while more infected individuals remain resident. Our model is one of the first to consider how infection intensity can lead to migration. Our results frame migratory escape in light of infection intensity rather than prevalence, thus demonstrating that decreased infection intensity should be considered a benefit of migration, alongside other typical drivers of migration.


Assuntos
Parasitos , Migração Animal , Animais , Humanos
19.
J Anim Ecol ; 89(6): 1448-1457, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32115700

RESUMO

Pathogen and parasite infections are increasingly recognized as powerful drivers of animal movement, including migration. Yet, infection-related migration benefits can result from a combination of environmental and/or social conditions, which can be difficult to disentangle. Here, we focus on two infection-related mechanisms that can favour migration: moving to escape versus recover from infection. By directly comparing the evolution of migration in response to each mechanism, we can evaluate the likely importance of changing abiotic conditions (linked to migratory recovery) with changing social conditions (linked to migratory escape) in terms of infection-driven migration. We built a mathematical model and analysed it using numerically simulated adaptive dynamics to determine when migration should evolve for each migratory recovery and social migratory escape. We found that a higher fraction of the population migrated under migratory recovery than under social migratory escape. We also found that two distinct migratory strategies (e.g. some individuals always migrate and others only occasionally migrate) sometimes coexisted within populations with social migratory escape, but never with migratory recovery. Our results suggest that migratory recovery is more likely to promote the evolution of migratory behaviour, rather than escape from infected conspecifics (social migratory escape).


Assuntos
Migração Animal , Modelos Teóricos , Animais
20.
Nature ; 577(7790): 370-375, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915382

RESUMO

The partial pressure of CO2 in the oceans has increased rapidly over the past century, driving ocean acidification and raising concern for the stability of marine ecosystems1-3. Coral reef fishes are predicted to be especially susceptible to end-of-century ocean acidification on the basis of several high-profile papers4,5 that have reported profound behavioural and sensory impairments-for example, complete attraction to the chemical cues of predators under conditions of ocean acidification. Here, we comprehensively and transparently show that-in contrast to previous studies-end-of-century ocean acidification levels have negligible effects on important behaviours of coral reef fishes, such as the avoidance of chemical cues from predators, fish activity levels and behavioural lateralization (left-right turning preference). Using data simulations, we additionally show that the large effect sizes and small within-group variances that have been reported in several previous studies are highly improbable. Together, our findings indicate that the reported effects of ocean acidification on the behaviour of coral reef fishes are not reproducible, suggesting that behavioural perturbations will not be a major consequence for coral reef fishes in high CO2 oceans.


Assuntos
Recifes de Corais , Peixes/fisiologia , Animais , Comportamento Animal , Dióxido de Carbono/análise , Concentração de Íons de Hidrogênio , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...