Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 143(4): 2089, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29716263

RESUMO

Due to the manufacturing process, some fibrous materials like glasswool may be transversely isotropic (TI): fibers are mostly parallel to a plane of isotropy within which material properties are identical in all directions whereas properties are different along the transverse direction. The behavior of TI fibrous material is well described by the TI Biot's model, but it requires one to measure several mechanical parameters and to solve the TI Biot's equations. This paper presents an equivalent fluid model that can be suitable for TI materials under certain assumptions. It takes the form of a classical wave equation for the pressure involving an effective density tensor combining both limp and rigid frame behaviors of the material. This scalar wave equation is easily amenable to analytical and numerical treatments with a finite element method. Numerical results, based on the proposed model, are compared with experimental results obtained for two configurations with a fibrous material. The first concerns the absorption of an incident plane wave impinging on a fibrous slab and the second corresponds to the transmission loss of a splitter-type silencer in a duct. Both configurations highlight the effect of the sample orientation and give an illustration of the unusual TI behavior for fluids.

2.
J Acoust Soc Am ; 137(6): 3221-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26093412

RESUMO

An analytical model based on a homogenization process is used to predict and understand the behavior of finite length splitter/baffle-type silencers inserted axially into a rigid rectangular duct. Such silencers consist of a succession of parallel baffles made of porous material and airways inserted axially into a rigid duct. The pore network of the porous material in the baffle and the larger pores due to the airway can be considered as a double porosity (DP) medium with well-separated pore sizes. This scale separation leads by homogenization to the DP model, widely used in the porous material community. This alternative approach based on a homogenization process sheds physical insight into the attenuation mechanisms taking place in the silencer. Numerical comparisons with a reference method are used to show that the theory provides good results as long as the pressure wave in the silencer airways propagates as a plane wave parallel to the duct axis. The explicit expression of the axial wavenumber in the DP medium is used to derive an explicit expression for the optimal resistivity value of the porous material, ensuring the best dissipation for a given silencer geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA