Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 308: 119703, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787420

RESUMO

Phytases are a group of digestive enzymes which are commonly used as feed enzymes. These enzymes are used exogenously in the feeds of monogastric animals thereby it improves the digestibility of phosphorous and thus reduces the negative impact of inorganic P excretion on the environment. Even though these enzymes are widely distributed in many life forms, microorganisms are the most preferred and potential source of phytase. Despite the extensive availability of the phytase-producing microbial consortia, only a few microorganisms have been known to be exploited at industrial level. The high costs of the enzyme along with the incapability to survive high temperatures followed by the poor storage stability are noted to be the bottleneck in the commercialization of enzymes. For this reason, besides the conventional fermentation approaches, the applicability of cloning, expression studies and genetic engineering has been implemented for the past few years to accomplish the abovesaid benefits. The site-directed mutagenesis as well as knocking out have also validated their prominent role in microbe-based phytase production with enhanced levels. The present review provides detailed information on recent insights on the modification of phytases through heterologous expression and protein engineering to make thermostable and protease-resistant phytases.


Assuntos
6-Fitase , Poluentes Ambientais , 6-Fitase/genética , 6-Fitase/metabolismo , Ração Animal , Animais , Estabilidade Enzimática , Engenharia de Proteínas
2.
Bioresour Technol ; 346: 126410, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34838635

RESUMO

Diols are important platform chemicals with extensive industrial applications in biopolymer synthesis, cosmetics, and fuels. The increased dependence on non-renewable sources to meet the energy requirement of the population raised issues regarding fossil fuel depletion and environmental impacts. The utilization of biological methods for the synthesis of diols by utilizing renewable resources such as glycerol and agro-residual wastes gained attention worldwide because of its advantages. Among these, biotransformation of 1,3-propanediol (1,3-PDO) and 2,3-butanediol (2,3-BDO) were extensively studied and at present, these diols are produced commercially in large scale with high yield. Many important isomers of C2-C4 diols lack natural synthetic pathways and development of chassis strains for the synthesis can be accomplished by adopting synthetic biology approaches. This current review depicts an overall idea about the pathways involved in C2-C4 diol production, metabolic intervention strategies and technologies in recent years.


Assuntos
Álcoois , Butileno Glicóis , Glicerol , Engenharia Metabólica , Propilenoglicol , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...