Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Reprod Dev ; 86(11): 1485-1504, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31518041

RESUMO

Declining fertility rates in both human and animals is a cause for concern. While many of the infertility cases are due to known causes, idiopathic infertility is reported in 30% of the infertile couples. In such cases, 18% of the infertile males carry antisperm antibodies (ASAs). Such data are lacking in livestock, wherein 20-30% of the animals are being culled due to low fertility. In males, the blood-testis barrier (BTB) and biomolecules in the semen provide an immuno-tolerant microenvironment for spermatozoa as they traverse the immunologic milieu of both the male and female reproductive tracts. For example, insults from environmental contaminants, infections and inflammatory conditions are likely to impact the immune privilege state of the testis and fertility. The female mucosal immune system can recognize allogenic spermatozoa-specific proteins affecting sperm kinematics and sperm-zona binding leading to immune infertility. Elucidating the functions and pathways of the immune regulatory molecules associated with fertilization are prerequisites for understanding their impact on fertility. An insight into biomolecules associated with spermatozoal immune tolerance may generate inputs to develop diagnostic tools and modulate fertility. High-throughput sequencing technologies coupled with bioinformatics analyses provides a path forward to define the array of molecules influencing pregnancy outcome. This review discusses the seminal immune regulatory molecules from their origin in the testis until they traverse the uterine environment enabling fertilization and embryonic development. Well-designed experiments and the identification of biomarkers may provide a pathway to understand the finer details of reproductive immunology that will afford personalized therapies.


Assuntos
Barreira Hematotesticular/imunologia , Fertilidade/imunologia , Tolerância Imunológica , Sêmen/imunologia , Espermatozoides/imunologia , Animais , Feminino , Humanos , Infertilidade Masculina/imunologia , Masculino , Testículo/imunologia , Útero/imunologia
2.
Syst Biol Reprod Med ; 64(6): 484-501, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29537884

RESUMO

With artificial insemination (AI) and other precision dependent assisted reproductive technologies (ART) being followed in large scale in human and animal reproduction, assessing semen quality and fertilizability is under continuous scrutiny. Various tests have been developed to predict semen quality, but so far no single, highly reliable test is available. In this regard, transcriptomic profiling of spermatozoa assumes significance as it carries the information about spermatogenesis, sperm function, and paternal roles in post-fertilization events. Human spermatozoal transcriptome profiling has been carried out on a large number of individuals to predict the semen quality. A study in human indicated that the outcome of some idiopathic couples seeking reproductive care could be helped using transcriptomic profiling of spermatozoa. Such studies have a direct impact on the bovine dairy industry, wherein AI is practiced. Limited studies in bovine spermatozoal transcriptome profiling have revealed that the spermatozoa contain various classes of RNA, like in human. Approximately 13,000 bovine genes yield a series of spermatozoal transcripts, of which most are fragmented in nature. Their abundance is indicative of the timing of events associated with spermatogenesis, e.g., PRM1, IGF1, BMP2; sperm function, TSSK6, CRISP, HSFY2; fertility, UBE2D3, Integrin-ß, LDC-1; and embryonic development, miR34c-5p, BCL2L11, BRCA1. The most abundant translated bovine transcripts are BSP3 and SPATA18, and are involved in regulation of germ cell development and the maintenance of chromatin integrity during spermatogenesis respectively. The presence of transcripts associated with placental development, e.g., placental associated glycoproteins (PAGs) have suggested their possible influence beyond early embryonic development. Changes in transcript levels like RPL31 and PRKCE that increase, and PRM1 that decreases, during cryopreservation need to be defined in order to optimize cryopreservation and fertility yield. Spermatozoal transcriptome profiling with validation studies are warranted in large numbers of animals to elucidate their significance for selecting fertile bulls for the breeding program. Abbreviations: AI: artificial insemination; BSE: breeding soundness evaluation; cfs-mRNA: cell-free seminal mRNA; piRNA: PIWI-interacting RNA; tRNA: transfer RNA; fg: femtogram; TPM: transcripts per million reads; RPKM: reads per kilobase million; rRNA: ribosomal RNA; mt-RNA: mitochondrial RNA; lncRNA: long non-coding RNA; sncRNA: small noncoding RNA; snoRNA: small nucleolar RNA; snRNA: small nuclear RNA; miRNA: microRNA; snaR: small NF90-associated RNAs; SINES: short interspersed nuclear elements; LINES: long interspersed nuclear elements; MER: medium reiterated sequence; F1 offspring: filial 1 offspring; PAGs: placental associated glycoproteins; TCP: Transcription factor T complex protein; BSP3: bovine seminal plasma protein 3; SCNT: somatic cell nuclear transfer; qPCR: quantitative (real-time) polymerase chain reaction; SSH: suppression subtractive hybridization; SNP: single nucleotide polymorphism; 2-DE: 2 dimensional gel electrophoresis; LC-MS/MS: liquid chromatography-tandem mass spectrometry.


Assuntos
Bovinos/metabolismo , Fertilidade , RNA/metabolismo , Análise do Sêmen , Espermatozoides/metabolismo , Animais , Bovinos/genética , Criopreservação , Defensinas/metabolismo , Fertilização , Genômica , Masculino , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...