Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 17(1): 014106, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704613

RESUMO

Herringbone micromixers are a powerful tool for introducing advection into microfluidic systems. While these mixers are typically used for mixing fluids faster than the rate of diffusion, there has been recent interest in using the device to enhance interactions between suspended particles and channel walls. We show how the common approximations applied to herringbone micromixer theory can have a significant impact on results. We show that the inclusion of gravity can greatly alter the interaction probability between suspended particles and channel walls. We also investigate the proposed impedance matching condition and the inclusion of imperfect binding using numerical methods, and investigate transient behaviors using an experimental system. These results indicate that while traditional methods, such as simple streamline analysis, remain powerful tools, it should not be considered predictive in the general case.

2.
J Appl Phys ; 132(16): 164701, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36313737

RESUMO

Integrating miniature pumps within microfluidic devices is crucial for advancing point-of-care diagnostics. Understanding the emergence of flow from novel integrated pumping systems is the first step in their successful implementation. A Purcell-like elasto-magnetic integrated microfluidic pump has been simulated in COMSOL Multiphysics and its performance has been investigated and evaluated. An elastic, cilia-like element contains an embedded magnet, which allows for actuation via a weak, uniaxial, sinusoidally oscillating, external magnetic field. Pumping performance is correlated against a number of variables, such as the frequency of the driving field and the proximity of the pump to the channel walls, in order to understand the emergence of the pumping behavior. Crucially, these simulations capture many of the trends observed experimentally and shed light on the key interactions. The proximity of the channel walls in the in-plane direction strongly determines the direction of net fluid flow. This characterization has important implications for the design and optimization of this pump in practical applications.

3.
Lab Chip ; 21(15): 3019-3020, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34165486

RESUMO

Correction for 'Microfluidic devices powered by integrated elasto-magnetic pumps' by Jacob L. Binsley et al., Lab Chip, 2020, 20, 4285-4295, DOI: .

4.
Lab Chip ; 20(22): 4285-4295, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33094306

RESUMO

We show how an asymmetric elasto-magnetic system provides a novel integrated pumping solution for lab-on-a-chip and point of care devices. This monolithic pumping solution, inspired by Purcell's 3-link swimmer, is integrated within a simple microfluidic device, bypassing the requirement of external connections. We experimentally prove that this system can provide tuneable fluid flow with a flow rate of up to 600 µL h-1. This fluid flow is achieved by actuating the pump using a weak, uniform, uniaxial, oscillating magnetic field, with field amplitudes in the range of 3-6 mT. Crucially, the fluid flow can be reversed by adjusting the driving frequency. We experimentally prove that this device can successfully operate on fluids with a range of viscosities, where pumping at higher viscosity correlates with a decreasing optimal driving frequency. The fluid flow produced by this device is understood here by examining the non-reciprocal motion of the elasto-magnetic component. This device has the capability to replace external pumping systems with a simple, integrated, lab-on-a-chip component.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Fenômenos Magnéticos , Magnetismo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...