Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-456855

RESUMO

Translation of SARS-CoV-2-encoded mRNAs by the host ribosomes is essential for its propagation. Following infection, the early expressed viral protein NSP1 binds the ribosome, represseses translation and induces mRNA degradation, while the host elicits anti-viral response. The mechanisms enabling viral mRNAs to escape this multifaceted repression remain obscure. Here we show that expression of NSP1 leads to destabilization of multi-exon cellular mRNAs, while intron-less transcripts, such as viral mRNAs and anti-viral interferon genes, remain relatively stable. We identified a conserved and precisely located cap-proximal RNA element devoid of guanosines that confers resistance to NSP1-meidated translation inhibition. Importantly, the primary sequence rather than the secondary structure is critical for protection. We further show that the genomic 5UTR of SARS-CoV-2 exhibits an IRES-like activity and promotes expression of NSP1 in an eIF4E-independent and Torin-1 resistant manner. Upon expression, NSP1 enhances cap-independent translation. However, the sub-genomic 5UTRs are highly sensitive to eIF4E availability, rendering viral propagation partially sensitive to Torin-1. The combined NSP1-mediated degradation of spliced mRNAs and translation inhibition of single-exon genes, along with the unique features present in the viral 5UTRs, ensure robust expression of viral mRNAs. These features can be exploited as potential therapeutic targets.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-398578

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 19 (COVID-19) pandemic. Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis and its ability to antagonize innate immune responses. Here, we use RNA-sequencing and ribosome profiling along SARS-CoV-2 infection and comprehensively define the mechanisms that are utilized by SARS-CoV-2 to shutoff cellular protein synthesis. We show SARS-CoV-2 infection leads to a global reduction in translation but that viral transcripts are not preferentially translated. Instead, we reveal that infection leads to accelerated degradation of cytosolic cellular mRNAs which facilitates viral takeover of the mRNA pool in infected cells. Moreover, we show that the translation of transcripts whose expression is induced in response to infection, including innate immune genes, is impaired, implying infection prevents newly transcribed cellular mRNAs from accessing the ribosomes. Overall, our results uncover the multipronged strategy employed by SARS-CoV-2 to commandeer the translation machinery and to suppress host defenses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...