Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 22(16): 164207, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21386413

RESUMO

High pressure studies in MnSi suggest the existence of a non-Fermi liquid state without quantum criticality. The observation of partial magnetic order in a small pocket of the pressure versus temperature phase diagram of MnSi has additionally inspired several proposals of complex spin textures in chiral magnets. We used neutron scattering to observe the formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, under applied magnetic fields in metallic and semiconducting B20 compounds. In strongly disordered systems the skyrmion lattice is hysteretic and extends over a large temperature range. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of spin order composed of topologically stable spin textures.

2.
Phys Rev Lett ; 102(18): 186602, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19518895

RESUMO

Recent small angle neutron scattering suggests that the spin structure in the A phase of MnSi is a so-called triple-Q state, i.e., a superposition of three helices under 120 degrees. Model calculations indicate that this structure in fact is a lattice of so-called Skyrmions, i.e., a lattice of topologically stable knots in the spin structure. We report a distinct additional contribution to the Hall effect in the temperature and magnetic field range of the proposed Skyrmion lattice, where such a contribution is neither seen nor expected for a normal helical state. Our Hall effect measurements constitute a direct observation of a topologically quantized Berry phase that identifies the spin structure seen in neutron scattering as the proposed Skyrmion lattice.

3.
Science ; 323(5916): 915-9, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19213914

RESUMO

Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortex, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states.

4.
J Phys Condens Matter ; 21(16): 164215, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21825395

RESUMO

Systems lacking inversion symmetry, such as selected three-dimensional compounds, multilayers and surfaces support Dzyaloshinsky-Moriya (DM) spin-orbit interactions. In recent years DM interactions have attracted great interest, because they may stabilize magnetic structures with a unique chirality and non-trivial topology. The inherent coupling between the various properties provided by DM interactions is potentially relevant for a variety of applications including, for instance, multiferroic and spintronic devices. The, perhaps, most extensively studied material in which DM interactions are important is the cubic B20 compound MnSi. We review the magnetic field and pressure dependence of the magnetic properties of MnSi. At ambient pressure this material displays helical order. Under hydrostatic pressure a non-Fermi liquid state emerges, where a partial magnetic order, reminiscent of liquid crystals, is observed in a small pocket. Recent experiments strongly suggest that the non-Fermi liquid state is not due to quantum criticality. Instead it may be the signature of spin textures and spin excitations with a non-trivial topology.

5.
Phys Rev Lett ; 96(19): 196406, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16803120

RESUMO

We examine the effects of long-range dipolar forces on metamagnetic transitions and generalize the theory of Condon domains to the case of an itinerant electron system undergoing a first-order metamagnetic transition. We demonstrate that, within a finite range of the applied field, dipolar interactions induce a spatial modulation of the magnetization in the form of stripes or bubbles. Our findings are consistent with recent observations in the bilayer ruthenate Sr(3)Ru(2)O(7).

6.
Phys Rev Lett ; 96(20): 207202, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16803200

RESUMO

MnSi is an itinerant magnet which at low temperatures develops a helical spin-density wave. Under pressure it undergoes a transition into an unusual partially ordered state whose nature is debated. Here we propose that the helical spin crystal (the magnetic analog of a solid) is a useful starting point to understand partial order in MnSi. We consider different helical spin crystals and determine conditions under which they may be energetically favored. The most promising candidate has bcc structure and is reminiscent of the blue phase of liquid crystals in that it has line nodes of magnetization protected by symmetry. We introduce a Landau theory to study the properties of these states, in particular, the effect of crystal anisotropy, magnetic field, and disorder. These results compare favorably with existing data on MnSi from neutron scattering and magnetic field studies. Future experiments to test this scenario are also proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA