Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Acta Crystallogr A Found Adv ; 80(Pt 3): 293-304, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683644

RESUMO

Monoclinic ferroelectric phases are prevalent in various functional materials, most notably mixed-ion perovskite oxides. These phases can manifest as regularly ordered long-range crystallographic structures or as macroscopic averages of the self-assembled tetragonal/rhombohedral nanodomains. The structural and physical properties of monoclinic ferroelectric phases play a pivotal role when exploring the interplay between ferroelectricity, ferroelasticity, giant piezoelectricity and multiferroicity in crystals, ceramics and epitaxial thin films. However, the complex nature of this subject presents challenges, particularly in deciphering the microstructures of monoclinic domains. In Paper I [Biran & Gorfman (2024). Acta Cryst. A80, 112-128] the geometrical principles governing the connection of domain microstructures formed by pairing MAB type monoclinic domains were elucidated. Specifically, a catalog was established of `permissible domain walls', where `permissible', as originally introduced by Fousek & Janovec [J. Appl. Phys. (1969), 40, 135-142], denotes a mismatch-free connection between two monoclinic domains along the corresponding domain wall. The present article continues the prior work by elaborating on the formalisms of permissible domain walls to describe domain microstructures formed by pairing the MC type monoclinic domains. Similarly to Paper I, 84 permissible domain walls are presented for MC type domains. Each permissible domain wall is characterized by Miller indices, the transformation matrix between the crystallographic basis vectors of the domains and, crucially, the expected separation of Bragg peaks diffracted from the matched pair of domains. All these parameters are provided in an analytical form for easy and intuitive interpretation of the results. Additionally, 2D illustrations are provided for selected instances of permissible domain walls. The findings can prove valuable for various domain-related calculations, investigations involving X-ray diffraction for domain analysis and the description of domain-related physical properties.

2.
Acta Crystallogr A Found Adv ; 80(Pt 1): 112-128, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059824

RESUMO

The concept of monoclinic ferroelectric phases has been extensively used over recent decades for the understanding of crystallographic structures of ferroelectric materials. Monoclinic phases have been actively invoked to describe the phase boundaries such as the so-called morphotropic phase boundary in functional perovskite oxides. These phases are believed to play a major role in the enhancement of such functional properties as dielectricity and electromechanical coupling through rotation of spontaneous polarization and/or modification of the rich domain microstructures. Unfortunately, such microstructures remain poorly understood due to the complexity of the subject. The goal of this work is to formulate the geometrical laws behind the monoclinic domain microstructures. Specifically, the result of previous work [Gorfman et al. (2022). Acta Cryst. A78, 158-171] is implemented to catalog and outline some properties of permissible domain walls that connect `strain' domains with monoclinic (MA/MB type) symmetry, occurring in ferroelectric perovskite oxides. The term `permissible' [Fousek & Janovec (1969). J. Appl. Phys. 40, 135-142] pertains to the domain walls connecting a pair of `strain' domains without a lattice mismatch. It was found that 12 monoclinic domains may form pairs connected along 84 types of permissible domain walls. These contain 48 domain walls with fixed Miller indices (known as W-walls) and 36 domain walls whose Miller indices may change when free lattice parameters change as well (known as S-walls). Simple and intuitive analytical expressions are provided that describe the orientation of these domain walls, the matrices of transformation between crystallographic basis vectors and, most importantly, the separation between Bragg peaks, diffracted from each of the 84 pairs of domains, connected along a permissible domain wall. It is shown that the orientation of a domain wall may be described by the specific combination of the monoclinic distortion parameters r = [2/(γ - α)][(c/a) - 1], f = (π - 2γ)/(π - 2α) and p = [2/(π - α - γ)] [(c/a) - 1]. The results of this work will enhance understanding and facilitate investigation (e.g. using single-crystal X-ray diffraction) of complex monoclinic domain microstructures in both crystals and thin films.

3.
PLoS One ; 12(8): e0183862, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28841711

RESUMO

Translation-independent mRNA localization represents an emerging concept in cell biology. In Escherichia coli, mRNAs encoding integral membrane proteins (MPRs) are targeted to the membrane where they are translated by membrane associated ribosomes and the produced proteins are inserted into the membrane co-translationally. In order to better understand aspects of the biogenesis and localization of MPRs, we investigated their subcellular distribution using cell fractionation, RNA-seq and qPCR. The results show that MPRs are overrepresented in the membrane fraction, as expected, and depletion of the signal recognition particle-receptor, FtsY reduced the amounts of all mRNAs on the membrane. Surprisingly, however, MPRs were also found relatively abundant in the soluble ribosome-free fraction and their amount in this fraction is increased upon overexpression of CspE, which was recently shown to interact with MPRs. CspE also conferred a positive effect on the membrane-expression of integral membrane proteins. We discuss the possibility that the effects of CspE overexpression may link the intriguing subcellular localization of MPRs to the cytosolic ribosome-free fraction with their translation into membrane proteins and that the ribosome-free pool of MPRs may represent a stage during their targeting to the membrane, which precedes translation.


Assuntos
Citoplasma/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , RNA Mensageiro/metabolismo , Ribossomos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
4.
Elife ; 52016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26824389

RESUMO

Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membrana Celular/química , Análise Mutacional de DNA , Glicoforinas/química , Glicoforinas/genética , Glicoforinas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Ligação Proteica , Receptor ErbB-2/química , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamases/metabolismo
5.
PLoS One ; 10(7): e0134413, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26225847

RESUMO

Are integral membrane protein-encoding mRNAs (MPRs) different from other mRNAs such as those encoding cytosolic mRNAs (CPRs)? This is implied from the emerging concept that MPRs are specifically recognized and delivered to membrane-bound ribosomes in a translation-independent manner. MPRs might be recognized through uracil-rich segments that encode hydrophobic transmembrane helices. To investigate this hypothesis, we designed DNA sequences encoding model untranslatable transcripts that mimic MPRs or CPRs. By utilizing in vitro-synthesized biotinylated RNAs mixed with Escherichia coli extracts, we identified a highly specific interaction that takes place between transcripts that mimic MPRs and the cold shock proteins CspE and CspC, which are normally expressed under physiological conditions. Co-purification studies with E. coli expressing 6His-tagged CspE or CspC confirmed that the specific interaction occurs in vivo not only with the model uracil-rich untranslatable transcripts but also with endogenous MPRs. Our results suggest that the evolutionarily conserved cold shock proteins may have a role, possibly as promiscuous chaperons, in the biogenesis of MPRs.


Assuntos
Proteínas e Peptídeos de Choque Frio/metabolismo , Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , Uracila/metabolismo , Membrana Celular/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...