Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(6): 978-986, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37291398

RESUMO

Improving the carboxylation properties of Rubisco has primarily arisen from unforeseen amino acid substitutions remote from the catalytic site. The unpredictability has frustrated rational design efforts to enhance plant Rubisco towards the prized growth-enhancing carboxylation properties of red algae Griffithsia monilis GmRubisco. To address this, we determined the crystal structure of GmRubisco to 1.7 Å. Three structurally divergent domains were identified relative to the red-type bacterial Rhodobacter sphaeroides RsRubisco that, unlike GmRubisco, are expressed in Escherichia coli and plants. Kinetic comparison of 11 RsRubisco chimaeras revealed that incorporating C329A and A332V substitutions from GmRubisco Loop 6 (corresponding to plant residues 328 and 331) into RsRubisco increased the carboxylation rate (kcatc) by 60%, the carboxylation efficiency in air by 22% and the CO2/O2 specificity (Sc/o) by 7%. Plastome transformation of this RsRubisco Loop 6 mutant into tobacco enhanced photosynthesis and growth up to twofold over tobacco producing wild-type RsRubisco. Our findings demonstrate the utility of RsRubisco for the identification and in planta testing of amino acid grafts from algal Rubisco that can enhance the enzyme's carboxylase potential.


Assuntos
Rhodobacter sphaeroides , Rodófitas , Ribulose-Bifosfato Carboxilase/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Fotossíntese , Plantas/metabolismo , Rodófitas/genética , Rodófitas/metabolismo , Catálise
2.
PNAS Nexus ; 2(2): pgac305, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36743474

RESUMO

The last decade has seen significant advances in the development of approaches for improving both the light harvesting and carbon fixation pathways of photosynthesis by nuclear transformation, many involving multigene synthetic biology approaches. As efforts to replicate these accomplishments from tobacco into crops gather momentum, similar diversification is needed in the range of transgenic options available, including capabilities to modify crop photosynthesis by chloroplast transformation. To address this need, here we describe the first transplastomic modification of photosynthesis in a crop by replacing the native Rubisco in potato with the faster, but lower CO2-affinity and poorer CO2/O2 specificity Rubisco from the bacterium Rhodospirillum rubrum. High level production of R. rubrum Rubisco in the potRr genotype (8 to 10 µmol catalytic sites m2) allowed it to attain wild-type levels of productivity, including tuber yield, in air containing 0.5% (v/v) CO2. Under controlled environment growth at 25°C and 350 µmol photons m2 PAR, the productivity and leaf biochemistry of wild-type potato at 0.06%, 0.5%, or 1.5% (v/v) CO2 and potRr at 0.5% or 1.5% (v/v) CO2 were largely indistinguishable. These findings suggest that increasing the scope for enhancing productivity gains in potato by improving photosynthate production will necessitate improvement to its sink-potential, consistent with current evidence productivity gains by eCO2 fertilization for this crop hit a ceiling around 560 to 600 ppm CO2.

3.
J Exp Bot ; 74(2): 664-676, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36322613

RESUMO

Rubisco is a fundamental enzyme in photosynthesis and therefore for life. Efforts to improve plant Rubisco performance have been hindered by the enzymes' complex chloroplast biogenesis requirements. New Synbio approaches, however, now allow the production of some plant Rubisco isoforms in Escherichia coli. While this enhances opportunities for catalytic improvement, there remain limitations in the utility of the expression system. Here we generate, optimize, and test a robust Golden Gate cloning E. coli expression system incorporating the protein folding machinery of tobacco chloroplasts. By comparing the expression of different plant Rubiscos in both E. coli and plastome-transformed tobacco, we show that the E. coli expression system can accurately predict high level Rubisco production in chloroplasts but poorly forecasts the biogenesis potential of isoforms with impaired production in planta. We reveal that heterologous Rubisco production in E. coli and tobacco plastids poorly correlates with Rubisco large subunit phylogeny. Our findings highlight the need to fully understand the factors governing Rubisco biogenesis if we are to deliver an efficient, low-cost screening tool that can accurately emulate chloroplast expression.


Assuntos
Escherichia coli , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Cloroplastos/metabolismo , Fotossíntese , Chaperonas Moleculares/metabolismo , Folhas de Planta/metabolismo , Dióxido de Carbono/metabolismo , Nicotiana/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(41): 25890-25896, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989135

RESUMO

Plant photosynthesis and growth are often limited by the activity of the CO2-fixing enzyme Rubisco. The broad kinetic diversity of Rubisco in nature is accompanied by differences in the composition and compatibility of the ancillary proteins needed for its folding, assembly, and metabolic regulation. Variations in the protein folding needs of catalytically efficient red algae Rubisco prevent their production in plants. Here, we show this impediment does not extend to Rubisco from Rhodobacter sphaeroides (RsRubisco)-a red-type Rubisco able to assemble in plant chloroplasts. In transplastomic tobRsLS lines expressing a codon optimized Rs-rbcLS operon, the messenger RNA (mRNA) abundance was ∼25% of rbcL transcript and RsRubisco ∼40% the Rubisco content in WT tobacco. To mitigate the low activation status of RsRubisco in tobRsLS (∼23% sites active under ambient CO2), the metabolic repair protein RsRca (Rs-activase) was introduced via nuclear transformation. RsRca production in the tobRsLS::X progeny matched endogenous tobacco Rca levels (∼1 µmol protomer·m2) and enhanced RsRubisco activation to 75% under elevated CO2 (1%, vol/vol) growth. Accordingly, the rate of photosynthesis and growth in the tobRsLS::X lines were improved >twofold relative to tobRsLS. Other tobacco lines producing RsRubisco containing alternate diatom and red algae S-subunits were nonviable as CO2-fixation rates (kcatc) were reduced >95% and CO2/O2 specificity impaired 30-50%. We show differences in hybrid and WT RsRubisco biogenesis in tobacco correlated with assembly in Escherichia coli advocating use of this bacterium to preevaluate the kinetic and chloroplast compatibility of engineered RsRubisco, an isoform amenable to directed evolution.


Assuntos
Proteínas de Bactérias/genética , Nicotiana/crescimento & desenvolvimento , Fotossíntese , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Rhodobacter sphaeroides/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Expressão Gênica , Cinética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Rhodobacter sphaeroides/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Nicotiana/química , Nicotiana/genética , Nicotiana/metabolismo
5.
Plant Cell ; 32(9): 2898-2916, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647068

RESUMO

Engineering improved Rubisco for the enhancement of photosynthesis is challenged by the alternate locations of the chloroplast rbcL gene and nuclear RbcS genes. Here we develop an RNAi-RbcS tobacco (Nicotiana tabacum) master-line, tobRrΔS, for producing homogenous plant Rubisco by rbcL-rbcS operon chloroplast transformation. Four genotypes encoding alternative rbcS genes and adjoining 5'-intergenic sequences revealed that Rubisco production was highest (50% of the wild type) in the lines incorporating a rbcS gene whose codon use and 5' untranslated-region matched rbcL Additional tobacco genotypes produced here incorporated differing potato (Solanum tuberosum) rbcL-rbcS operons that either encoded one of three mesophyll small subunits (pS1, pS2, and pS3) or the potato trichome pST-subunit. The pS3-subunit caused impairment of potato Rubisco production by ∼15% relative to the lines producing pS1, pS2, or pST However, the ßA-ßB loop Asn-55-His and Lys-57-Ser substitutions in the pS3-subunit improved carboxylation rates by 13% and carboxylation efficiency (CE) by 17%, relative to potato Rubisco incorporating pS1 or pS2-subunits. Tobacco photosynthesis and growth were most impaired in lines producing potato Rubisco incorporating the pST-subunit, which reduced CE and CO2/O2 specificity 40% and 15%, respectively. Returning the rbcS gene to the plant plastome provides an effective bioengineering chassis for introduction and evaluation of novel homogeneous Rubisco complexes in a whole plant context.


Assuntos
Cloroplastos/genética , Nicotiana/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Solanum tuberosum/fisiologia , Proteínas de Bactérias/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Óperon , Iniciação Traducional da Cadeia Peptídica , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Subunidades Proteicas , Interferência de RNA , Rhodospirillum rubrum/genética , Ribulose-Bifosfato Carboxilase/genética , Solanum tuberosum/genética , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
6.
Plant Cell Environ ; 42(4): 1287-1301, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30375663

RESUMO

The folding and assembly of Rubisco large and small subunits into L8 S8 holoenzyme in chloroplasts involves many auxiliary factors, including the chaperone BSD2. Here we identify apparent intermediary Rubisco-BSD2 assembly complexes in the model C3 plant tobacco. We show BSD2 and Rubisco content decrease in tandem with leaf age with approximately half of the BSD2 in young leaves (~70 nmol BSD2 protomer.m2 ) stably integrated in putative intermediary Rubisco complexes that account for <0.2% of the L8 S8 pool. RNAi-silencing BSD2 production in transplastomic tobacco producing bacterial L2 Rubisco had no effect on leaf photosynthesis, cell ultrastructure, or plant growth. Genetic crossing the same RNAi-bsd2 alleles into wild-type tobacco however impaired L8 S8 Rubisco production and plant growth, indicating the only critical function of BSD2 is in Rubisco biogenesis. Agrobacterium mediated transient expression of tobacco, Arabidopsis, or maize BSD2 reinstated Rubisco biogenesis in BSD2-silenced tobacco. Overexpressing BSD2 in tobacco chloroplasts however did not alter Rubisco content, activation status, leaf photosynthesis rate, or plant growth in the field or in the glasshouse at 20°C or 35°C. Our findings indicate BSD2 functions exclusively in Rubisco biogenesis, can efficiently facilitate heterologous plant Rubisco assembly, and is produced in amounts nonlimiting to tobacco growth.


Assuntos
Chaperonas Moleculares/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Chaperonas Moleculares/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Nicotiana/crescimento & desenvolvimento
7.
Plant Mol Biol ; 91(1-2): 1-13, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27008640

RESUMO

The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação para Baixo/fisiologia , RNA Helicases/metabolismo , Splicing de RNA/fisiologia , RNA Mensageiro/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , RNA Helicases/genética , RNA Mensageiro/genética , Temperatura
8.
Proc Natl Acad Sci U S A ; 112(11): 3564-9, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733857

RESUMO

Enabling improvements to crop yield and resource use by enhancing the catalysis of the photosynthetic CO2-fixing enzyme Rubisco has been a longstanding challenge. Efforts toward realization of this goal have been greatly assisted by advances in understanding the complexities of Rubisco's biogenesis in plastids and the development of tailored chloroplast transformation tools. Here we generate transplastomic tobacco genotypes expressing Arabidopsis Rubisco large subunits (AtL), both on their own (producing tob(AtL) plants) and with a cognate Rubisco accumulation factor 1 (AtRAF1) chaperone (producing tob(AtL-R1) plants) that has undergone parallel functional coevolution with AtL. We show AtRAF1 assembles as a dimer and is produced in tob(AtL-R1) and Arabidopsis leaves at 10-15 nmol AtRAF1 monomers per square meter. Consistent with a postchaperonin large (L)-subunit assembly role, the AtRAF1 facilitated two to threefold improvements in the amount and biogenesis rate of hybrid L8(A)S8(t) Rubisco [comprising AtL and tobacco small (S) subunits] in tob(AtL-R1) leaves compared with tob(AtL), despite >threefold lower steady-state Rubisco mRNA levels in tob(AtL-R1). Accompanying twofold increases in photosynthetic CO2-assimilation rate and plant growth were measured for tob(AtL-R1) lines. These findings highlight the importance of ancillary protein complementarity during Rubisco biogenesis in plastids, the possible constraints this has imposed on Rubisco adaptive evolution, and the likely need for such interaction specificity to be considered when optimizing recombinant Rubisco bioengineering in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Chaperonas Moleculares/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/genética , Fotossíntese , Proteínas Recombinantes/metabolismo , Ribulose-Bifosfato Carboxilase/biossíntese , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Biocatálise , Evolução Molecular , Genótipo , Complexos Multiproteicos/metabolismo , Filogenia , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Multimerização Proteica , Estabilidade Proteica , Subunidades Proteicas/metabolismo , Transformação Genética
9.
J Exp Bot ; 59(2): 361-76, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18256049

RESUMO

Dynamin-related proteins are large GTPases that deform and cause fission of membranes. The DRP1 family of Arabidopsis thaliana has five members of which DRP1A, DRP1C, and DRP1E are widely expressed. Likely functions of DRP1A were identified by studying rsw9, a null mutant of the Columbia ecotype that grows continuously but with altered morphology. Mutant roots and hypocotyls are short and swollen, features plausibly originating in their cellulose-deficient walls. The reduction in cellulose is specific since non-cellulosic polysaccharides in rsw9 have more arabinose, xylose, and galactose than those in wild type. Cell plates in rsw9 roots lack DRP1A but still retain DRP1E. Abnormally placed and often incomplete cell walls are preceded by abnormally curved cell plates. Notwithstanding these division abnormalities, roots and stems add new cells at wild-type rates and organ elongation slows because rsw9 cells do not grow as long as wild-type cells. Absence of DRP1A reduces endocytotic uptake of FM4-64 into the cytoplasm of root cells and the hypersensitivity of elongation and radial swelling in rsw9 to the trafficking inhibitor monensin suggests that impaired endocytosis may contribute to the development of shorter fatter roots, probably by reducing cellulose synthesis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Membrana Celular/fisiologia , Celulose/biossíntese , Citocinese/fisiologia , Dinaminas/fisiologia , Endocitose/fisiologia , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Crescimento Celular , Parede Celular/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Expressão Gênica , Mutação , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Análise de Sequência de DNA
10.
Plant J ; 48(4): 606-18, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17059404

RESUMO

The Arabidopsis radial swelling mutant rsw10 showed ballooning of root trichoblasts, a lower than wild-type level of cellulose and altered levels of some monosaccharides in non-cellulosic polysaccharides. Map-based cloning showed that the mutated gene (At1g71100) encodes a ribose 5-phosphate isomerase (RPI) and that the rsw10 mutation replaces a conserved glutamic acid residue with lysine. Although RPI is intimately involved with many biochemical pathways, media supplementation experiments suggest that the visible phenotype results from a defect in the production of pyrimidine-based sugar-nucleotide compounds, most likely uridine 5'-diphosphate-glucose, the presumed substrate of cellulose synthase. Two of three RPI sequences in the nuclear genome are cytoplasmic, while the third has a putative chloroplast transit sequence. The sequence encoding both cytoplasmic enzymes could complement the mutation when expressed behind the CaMV 35S promoter, while fusion of the RSW10 promoter region to the GUS reporter gene established that the gene is expressed in many aerial tissues as well as the roots. The prominence of the rsw10 phenotype in roots probably reflects RSW10 being the only cytosolic RPI in this tissue and the gene encoding the plastid RPI being relatively weakly expressed. We could not, however, detect a decrease in total RPI activity in root extracts. The rsw10 phenotype is prominent near the root tip where cells undergo division, endoreduplication and cell expansion and so are susceptible to a restriction in de novo pyrimidine production. The two cytosolic RPIs probably arose in an ancient duplication event, their present expression patterns representing subfunctionalization of the expression of the original ancestral gene.


Assuntos
Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Celulose/biossíntese , Mutação/genética , Uridina/metabolismo , Arabidopsis/efeitos dos fármacos , Duplicação Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Plântula/metabolismo , Transcrição Gênica , Uridina/farmacologia
11.
Plant Physiol ; 142(2): 685-95, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16891551

RESUMO

CesA1 and CesA3 are thought to occupy noninterchangeable sites in the cellulose synthase making primary wall cellulose in Arabidopsis (Arabidopsis thaliana L. Heynh). With domain swaps and deletions, we show that sites C terminal to transmembrane domain 2 give CesAs access to their individual sites and, from dominance and recessive behavior, deduce that certain CesA alleles exclude others from accessing each site. Constructs that swapped or deleted N-terminal domains were stably transformed into the wild type and into the temperature-sensitive mutants rsw1 (Ala-549Val in CesA1) and rsw5 (Pro-1056Ser in CesA3). Dominant-positive behavior was assayed as root elongation at the restrictive temperature and dominant-negative effects were observed at the permissive temperature. A protein with the catalytic and C-terminal domains of CesA1 and the N-terminal domain of CesA3 promoted growth only in rsw1 consistent with it accessing the CesA1 site even though it contained the CesA3 N-terminal domain. A protein having the CesA3 catalytic and C-terminal domains linked to the CesA1 N-terminal domain dramatically affected growth, but only in the CesA3 mutant. This is consistent with the operation of the same access rule taking this chimeric protein to the CesA3 site. In this case, however, the transgene behaved as a genotype-specific dominant negative, causing a 60% death rate in rsw5, but giving no visible phenotype in wild type or rsw1. We therefore hypothesize that possession of CesA3(WT) protects Columbia and rsw1 from the lethal effects of this chimeric protein, whereas the mutant protein (CesA3(rsw5)) does not.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/enzimologia , Celulose/metabolismo , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Glucosiltransferases/genética , Dados de Sequência Molecular , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Mutação
12.
Plant J ; 32(6): 949-60, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12492837

RESUMO

rsw3 is a temperature-sensitive mutant of Arabidopsis thaliana showing radially swollen roots and a deficiency in cellulose. The rsw3 gene was identified by a map-based strategy, and shows high similarity to the catalytic alpha-subunits of glucosidase II from mouse, yeast and potato. These enzymes process N-linked glycans in the ER, so that they bind and then release chaperones as part of the quality control pathway, ensuring correct protein folding. Putative beta-subunits for the glucosidase II holoenzyme identified in the Arabidopsis and rice genomes share characteristic motifs (including an HDEL ER-retention signal) with beta-subunits in mammals and yeast. The genes encoding the putative alpha- and beta-subunits are single copy and, like the rsw3 phenotype, widely expressed. rsw3 reduces cell number more strongly than cell size in stamen filaments and probably stems. Most features of the rsw3 phenotype are shared with other cellulose-deficient mutants, but some--notably, production of multiple rosettes and a lack of secreted seed mucilage--are not and may reflect glucosidase II affecting processes other than cellulose synthesis. The rsw3 root phenotype develops more slowly than the rsw1 and rsw2 phenotypes when seedlings are transferred to the restrictive temperature. This is consistent with rsw3 reducing glycoprotein delivery from the ER to the plasma membrane whereas rsw1 and rsw2 act more rapidly by affecting the properties of already delivered enzymes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/genética , Celulose/biossíntese , Retículo Endoplasmático/enzimologia , alfa-Glucosidases/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Divisão Celular/fisiologia , Celulose/antagonistas & inibidores , Sequência Conservada/genética , Retículo Endoplasmático/metabolismo , Fertilidade/fisiologia , Flores/crescimento & desenvolvimento , Glucanos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mutação , Oryza/genética , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Conformação Proteica , Homologia de Sequência de Aminoácidos , Temperatura , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
13.
Plant Physiol ; 129(2): 797-807, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12068120

RESUMO

Polysaccharide analyses of mutants link several of the glycosyltransferases encoded by the 10 CesA genes of Arabidopsis to cellulose synthesis. Features of those mutant phenotypes point to particular genes depositing cellulose predominantly in either primary or secondary walls. We used transformation with antisense constructs to investigate the functions of CesA2 (AthA) and CesA3 (AthB), genes for which reduced synthesis mutants are not yet available. Plants expressing antisense CesA1 (RSW1) provided a comparison with a gene whose mutant phenotype (Rsw1(-)) points mainly to a primary wall role. The antisense phenotypes of CesA1 and CesA3 were closely similar and correlated with reduced expression of the target gene. Reductions in cell length rather than cell number underlay the shorter bolts and stamen filaments. Surprisingly, seedling roots were unaffected in both CesA1 and CesA3 antisense plants. In keeping with the mild phenotype compared with Rsw1(-), reductions in total cellulose levels in antisense CesA1 and CesA3 plants were at the borderline of significance. We conclude that CesA3, like CesA1, is required for deposition of primary wall cellulose. To test whether there were important functional differences between the two, we overexpressed CesA3 in rsw1 but were unable to complement that mutant's defect in CesA1. The function of CesA2 was less obvious, but, consistent with a role in primary wall deposition, the rate of stem elongation was reduced in antisense plants growing rapidly at 31 degrees C.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/genética , Glucosiltransferases/genética , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Parede Celular/metabolismo , Celulose/metabolismo , Expressão Gênica , Glucosiltransferases/fisiologia , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , RNA Antissenso/genética , RNA Antissenso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...