Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39056539

RESUMO

The hypothesis of the study was that (1) 3D printed drug delivery systems (DDS) could be characterized in situ during drug release using NMR/MRI techniques in terms of mass transport phenomena description (interfacial phenomena), particularly for systems dealing with two mobile phases (e.g., water and low molecular weight liquid polymer); (2) consequently, it could be possible to deduce how these interfacial mass transport phenomena influence functional properties of 3D printed DDS. Matrix drug delivery systems, prepared using masked stereolithography (MSLA), containing poly(ethylene glycol) diacrylate (PEGDA) and low molecular weight polyethylene glycol (PEG) with ropinirole hydrochloride (RH) were studied as example formulations. The PEGDA to PEG (mobile phase) concentration ratio influenced drug release. It was reflected in spatiotemporal changes in parametric T2 relaxation time (T2) and amplitude (A) images obtained using magnetic resonance imaging (MRI) and T1-T2 relaxation time correlations obtained using low-field time-domain nuclear magnetic resonance (LF TD NMR) relaxometry during incubation in water. For most of the tested formulations, two signal components related to PEG and water were assessed in the hydrated matrices by MRI relaxometry (parametric T2/A images). The PEG component faded out due to outward PEG diffusion and was gradually replaced by the water component. Both components spatially and temporally changed their parameters, reflecting evolving water-polymer interactions. The study shows that dynamic phenomena related to bidirectional mass transport can be quantified in situ using NMR and MRI techniques to gain insight into drug release mechanisms from 3D printed DDS systems.

2.
J Colloid Interface Sci ; 649: 626-634, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37364462

RESUMO

HYPOTHESIS: Three-dimensional 1H UltraShort Echo Time magnetic resonance imaging (1H 3D UTE MRI) of the matrix tablet made of hydrophilic polymer hydrated in heavy water (D2O) will allow investigation of the hydration-induced spatiotemporal evolution of the material originally included in the matrix tablet during manufacturing (i.e., polymer chains and bound water). EXPERIMENTS: The oblong-shaped sodium alginate matrix tablets were used to verify the hypothesis. The matrix was measured before and during hydration in D2O for up to 2 h using the 1H 3D UTE MRI. Five echo times (first at 20 µs) were used, resulting in five three-dimensional images (one image for each echo time). In chosen cross-sections, two parametric images, i.e., amplitude and T2* relaxation time maps, were calculated using "pixel-by-pixel" mono-exponential fitting. FINDINGS: The regions of the alginate matrix with T2* shorter than 600 µs were analyzed before (air-dry matrix) and during hydration (parametric, spatiotemporal analysis). During the study, only hydrogen nuclei (protons) pre-existing in the air-dry sample (polymer and bound water) were monitored because the hydration medium (D2O) was not visible. As a result, it was found that morphological changes in regions having T2* shorter than 300 µs were the effect of fast initial water ingress into the core of the matrix and subsequent polymer mobilization (early hydration providing additional 5% w/w hydration medium content relating to air-dry matrix). In particular, evolving layers in T2* maps were detected, and a fracture network was formed shortly after the matrix immersion in D2O. The current study presented a coherent picture of polymer mobilization accompanied by local polymer density decrease. We concluded, that the T2* mapping using 3D UTE MRI can effectively be applied as a polymer mobilization marker.

3.
Carbohydr Polym ; 299: 120215, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876817

RESUMO

Sodium alginate is used in various industries, including food, pharmaceutical, and agriculture. Matrix systems, e.g., tablets, and granules, are macro samples with incorporated active substances. During hydration, they are neither equilibrated nor homogenous. Phenomena occurring during hydration of such systems are complex, determine their functional properties and hence require multimodal analysis. Still, there's a lack of comprehensive view. The study aimed to obtain unique characteristics of the sodium alginate matrix during hydration, particularly considering polymer mobilization phenomena using low-field time-domain NMR relaxometry in H2O and D2O. An increase in total signal during 4 h of hydration in D2O of ca. 30 µV resulted from polymer/water mobilization. Modes in T1-T2 maps and changes in their amplitudes reflected physicochemical state of the polymer/water system: e.g. air-dry polymer mode (T1/T2 ~ 600) and two mobilized polymer/water modes (at T1/T2 ~ 40 and T1/T2 ~ 20). The study describes the approach to evaluating the hydration of the sodium alginate matrix in terms of the temporal evolution of proton pools: those existing in the matrix before hydration and those entering the matrix from the bulk water. It provides data complementary to spatially resolved methods like MRI and microCT.

4.
Materials (Basel) ; 14(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947294

RESUMO

Wound dressings when applied are in contact with wound exudates in vivo or with acceptor fluid when testing drug release from wound dressing in vitro. Therefore, the assessment of bidirectional mass transport phenomena in dressing after application on the substrate is important but has never been addressed in this context. For this reason, an in vitro wound dressing stack model was developed and implemented in the 3D printed holder. The stack was imaged using magnetic resonance imaging, i.e., relaxometric imaging was performed by means of T2 relaxation time and signal amplitude 1D profiles across the wound stack. As a substrate, fetal bovine serum or propylene glycol were used to simulate in vivo or in vitro cases. Multi-exponential analysis of the spatially resolved magnetic resonance signal enabled to distinguish components originating from water and propylene glycol in various environments. The spatiotemporal evolution of these components was assessed. The components were related to mass transport (water, propylene glycol) in the dressing/substrate system and subsequent changes of physicochemical properties of the dressing and adjacent substrate. Sharp changes in spatial profiles were detected and identified as moving fronts. It can be concluded that: (1) An attempt to assess mass transport phenomena was carried out revealing the spatial structure of the wound dressing in terms of moving fronts and corresponding layers; (2) Moving fronts, layers and their temporal evolution originated from bidirectional mass transport between wound dressing and substrate. The setup can be further applied to dressings containing drugs.

5.
Materials (Basel) ; 14(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34772056

RESUMO

The purpose was to show, using destructive/nondestructive methods, that the interplay between water, tablet structure, and composition determine the unique spatiotemporal hydration pattern of polymer-based matrices. The tablets containing a 1:1 w/w mixture of sodium alginate with salicylic acid (ALG/SA) or sodium salicylate (ALG/SNA) were studied using Karl Fischer titration, differential scanning calorimetry, X-ray microtomography, and magnetic resonance imaging. As the principal results, matrix specific features were detected, e.g., "locking" of the internal part of the matrix (ALG/SA); existence of lamellar region associated with detection of free/freezing water (ALG/SA); existence of water penetrating the matrix forming specific region preceding infiltration layer (ALG/SNA); switch in the onset temperature of endothermic water peak associated with an increase in the fraction of non-freezing water weight per dry matrix weight in the infiltration layer (ALG/SNA). The existence of complicated spatiotemporal hydration patterns influenced by matrix composition and molecular properties of constituents has been demonstrated.

6.
Polymers (Basel) ; 13(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34451226

RESUMO

Polyvinyl butyral (PVB) is an amorphous polymer employed in many technological applications. In order to highlight the relationships between macroscopic properties and dynamics at a microscopic level, motions of the main-chain and of the propyl side-chains were investigated between Tg - 288 °C and Tg + 55 °C, with Tg indicating the glass transition temperature. To this aim, a combination of solid state Nuclear Magnetic Resonance (NMR) methods was applied to two purposely synthesized PVB isotopomers: one fully protonated and the other perdeuterated on the side-chains. 1H time domain NMR and 1H field cycling NMR relaxometry experiments, performed across and above Tg, revealed that the dynamics of the main-chain corresponds to the α-relaxation associated to the glass transition, which was previously characterized by dielectric spectroscopy. A faster secondary relaxation was observed for the first time and ascribed to side-chains. The geometry and rate of motions of the different groups in the side-chains were characterized below Tg by 2H NMR spectroscopy.

7.
Materials (Basel) ; 14(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573366

RESUMO

Methods of spatiotemporal characterization of nonequilibrated polymer based matrices are still immature and imperfect. The purpose of the study was to develop the methodology for the spatiotemporal characterization of water transport and properties in alginate tablets under hydration. The regions of low water content were spatially and temporally sampled using Karl Fisher and Differential Scanning Callorimetry (spatial distribution of freezing/nonfreezing water) with spatial resolution of 1 mm. In the regions of high water content, where sampling was infeasible due to gel/sol consistency, magnetic resonance imaging (MRI) enabled characterization with an order of magnitude higher spatial resolution. The minimally hydrated layer (MHL), infiltration layer (IL) and fully hydrated layer (FHL) were identified in the unilaterally hydrated matrices. The MHL gained water from the first hour of incubation (5-10% w/w) and at 4 h total water content was 29-39% with nonfreezing pool of 28-29%. The water content in the IL was 45-47% and at 4 h it reached ~50% with the nonfreezing pool of 28% and T2 relaxation time < 10 ms. The FHL consisted of gel and sol layer with water content of 85-86% with a nonfreezing pool of 11% at 4 h and T2 in the range 20-200 ms. Hybrid destructive/nondestructive analysis of alginate matrices under hydration was proposed. It allowed assessing the temporal changes of water distribution, its mobility and interaction with matrices in identified layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...