Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 107(40): 17292-7, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20855629

RESUMO

Alum-precipitated protein (alum protein) vaccines elicit long-lasting neutralizing antibody responses that prevent bacterial exotoxins and viruses from entering cells. Typically, these vaccines induce CD4 T cells to become T helper 2 (Th2) cells that induce Ig class switching to IgG1. We now report that CD8 T cells also respond to alum proteins, proliferating extensively and producing IFN-γ, a key Th1 cytokine. These findings led us to question whether adoptive transfer of antigen-specific CD8 T cells alters the characteristic CD4 Th2 response to alum proteins and the switching pattern in responding B cells. To this end, WT mice given transgenic ovalbumin (OVA)-specific CD4 (OTII) or CD8 (OTI) T cells, or both, were immunized with alum-precipitated OVA. Cotransfer of antigen-specific CD8 T cells skewed switching patterns in responding B cells from IgG1 to IgG2a and IgG2b. Blocking with anti-IFN-γ antibody largely inhibited this altered B-cell switching pattern. The transcription factor T-bet is required in B cells for IFN-γ-dependent switching to IgG2a. By contrast, we show that this transcription factor is dispensable in B cells both for IFN-γ-induced switching to IgG2b and for inhibition of switching to IgG1. Thus, T-bet dependence identifies distinct transcriptional pathways in B cells that regulate IFN-γ-induced switching to different IgG isotypes.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Switching de Imunoglobulina , Interferon gama/imunologia , Ovalbumina/imunologia , Proteínas com Domínio T/metabolismo , Vacinas/imunologia , Transferência Adotiva , Compostos de Alúmen , Animais , Linfócitos B/citologia , Linfócitos T CD8-Positivos/citologia , Camundongos , Camundongos Endogâmicos C57BL
2.
Cytometry A ; 69(4): 266-72, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16498687

RESUMO

BACKGROUND: Acanthamoebae, in common with other protozoa, readily endocytose particulate material, which in turn may lead to the spread of infectious disease. METHODS: Evaluation and quantification of plain and carboxylate FITC-microsphere association with acanthamoebal trophzoites was undertaken using a combination of flow cytometry and confocal microscopy. Trophozoites from strains and species of Acanthamoeba were exposed to plain and carboxylate FITC-microspheres. Microsphere size and aspects such as trophozoite starvation, maturity, and exposure to metabolic inhibitors were assessed. RESULTS: All species and strains of Acanthamoeba readily endocytosed plain and carboxylate microspheres. Starving trophozoites significantly increased binding and potential ingestion of microspheres, whereas trophozoites of increasing maturity lost such abilities. Trophozoites showed a significant preference for 2.0- and 3.0-microm-diameter microspheres when compared with other sizes, which in turn could occupy much of the cytoplasm. The physiological inhibitors sodium azide, 2,4-dinitrophenol, and cytochalasin B reduced microsphere association with trophozoites; however, some microspheres still bound and associated with trophozoites after inhibitor exposure, a manifestation of both active and inactive agent involvement in microsphere endocytosis. CONCLUSIONS: Even though the origins of microsphere binding by acanthamoebal trophozoite remains shrouded, the combination of flow cytometry and confocal microscopy supported synergistic quantification and qualification of trophozoite-microsphere endocytosis.


Assuntos
Acanthamoeba/fisiologia , Endocitose/fisiologia , Citometria de Fluxo/métodos , Microscopia Confocal/métodos , Microesferas , Animais , Fluoresceína-5-Isotiocianato/metabolismo , Corantes Fluorescentes/metabolismo , Estágios do Ciclo de Vida/fisiologia
3.
Mycologia ; 96(1): 1-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-21148821

RESUMO

Flow cytometry and confocal microscopy were used to quantify and visualize FITC-lectin binding to cell-surface carbohydrate ligands of log and stationary phase acapsular and capsular Cryptococcus neoformans strains. Cell populations demonstrated marked avidity for terminal α-linked mannose and glucose specific FITC-Con A, mannose specific FITC-GNL, as well as N-acetylglucosamine specific FITC-WGA. Exposure to other FITC-lectins specific for mannose, fucose and N-acetylgalactosamine resulted in little cell-surface fluorescence. The nature of cell-surface carbohydrates was investigated further by measurement of the fluorescence from surfaces of log and stationary phase cell populations after exposing them to increasing concentrations of FITC-Con A and FITC-WGA. Cell fluorescence increased significantly with small increases in FITC-Con A and FITC-WGA concentrations attaining reproducible maxima. Measurements of this nature supported calculation of the lectin binding determinants EC 50, Hn, Fmax and relative Bmax values. EC50 values indicated that the yeast-cell surfaces had greatest affinity for FITC-WGA, however, relative Bmax values indicated that greater numbers of Con A binding sites were present on these same cell surfaces. Hn values suggested a co-operative lectin-carbohydrate ligand interaction. Imaging of FITC-Con A and FITC-WGA cell-surface fluorescence by confocal microscopy demonstrated marked localization of both lectins to cell surfaces associated with cell division and maturation, indicative of dynamic carbohydrate ligand exposure and masking. Some fluorescence was associated with entrapment of FITC-Con A by capsular components, but FITC-Con A and FITC-WGA readily penetrated the capsule matrix to bind to the same cell surfaces labelled in acapsular cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...