Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(22): 4517-4533, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375480

RESUMO

As a key diagnostic property of benzenoids and other polycyclic hydrocarbons, induced ring current has inspired diverse approaches for calculation, modeling, and interpretation. Grid-based methods include the ipsocentric ab initio calculation of current maps, and its surrogate, the pseudo-π model. Graph-based models include a family of conjugated-circuit (CC) models and the molecular-orbital Hückel-London (HL) model. To assess competing claims for physical relevance of derived current maps for benzenoids, a protocol for graph-reduction and comparison was devised. Graph reduction of pseudo-π grid maps highlights their overall similarity to HL maps, but also reveals systematic differences. These are ascribed to unavoidable pseudo-π proximity limitations for benzenoids with short nonbonded distances, and to poor continuity of pseudo-π current for classes of benzenoids with fixed bonds, where single-reference methods can be unreliable. Comparison between graph-based approaches shows that the published CC models all shadow HL maps reasonably well for most benzenoids (as judged by L1-, L2-, and L∞-error norms on scaled bond currents), though all exhibit physically implausible currents for systems with fixed bonds. These comparisons inspire a new combinatorial model (Model W) based on cycle decomposition of current, taking into account the two terms of lowest order that occur in the characteristic polynomial. This improves on all pure-CC models within their range of applicability, giving excellent adherence to HL maps for all Kekulean benzenoids, including those with fixed bonds (halving the rms discrepancy against scaled HL bond currents, from 11% in the best CC model, to 5% for the set of 18 360 Kekulean benzenoids on up to 10 hexagonal rings). Model W also has excellent performance for open-shell systems, where currents cannot be described at all by pure CC models (4% rms discrepancy against scaled HL bond currents for the 20112 non-Kekulean benzenoids on up to 10 hexagonal rings). Consideration of largest and next-to-largest matchings is a useful strategy for modeling and interpretation of currents in Kekulean and non-Kekulean benzenoids (nanographenes).

2.
Phys Chem Chem Phys ; 18(17): 11756-64, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-26762560

RESUMO

It is shown that the ring currents in perimeter hexagonal rings of Kekulean benzenoids, as estimated within the Randic conjugated-circuit model, can be calculated directly without tedious pairwise comparison of Kekulé structures or Kekulé counting for cycle-deleted subgraphs. Required are only the Pauling bond orders of perimeter bonds and the number of Kekulé structures of the benzenoid, both readily available from the adjacency matrix of the carbon skeleton. This approach provides easy calculation of complete current maps for benzenoids in which every face has at least one bond on the perimeter (as in the example of cata-condensed benzenoids), and allows qualitative evaluation of the main ring-current contributions to (1)H chemical shifts in general benzenoids. A combined Randic-Pauling model for correlation of ring current and bond length through bond order is derived and shown to be consistent with resilience of current under bond alternation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...