Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37985179

RESUMO

Chronic opioid exposure induces tolerance to the pain-relieving effects of opioids but sensitization to some other effects. While the occurrence of these adaptations is well understood, the underlying cellular mechanisms are less clear. This study aimed to determine how chronic treatment with morphine, a prototypical opioid agonist, induced adaptations to subsequent morphine signaling in different subcellular contexts. Opioids acutely inhibit glutamatergic transmission from medial thalamic (MThal) inputs to the dorsomedial striatum (DMS) via activity at µ-opioid receptors (MORs). MORs are present in somatic and presynaptic compartments of MThal neurons terminating in the DMS. We investigated the effects of chronic morphine treatment on subsequent morphine signaling at MThal-DMS synapses and MThal cell bodies in male and female mice. Surprisingly, chronic morphine treatment increased subsequent morphine inhibition of MThal-DMS synaptic transmission (morphine facilitation) in male, but not female, mice. At MThal cell bodies, chronic morphine treatment decreased subsequent morphine activation of potassium conductance (morphine tolerance) in both male and female mice. In knock-in mice expressing phosphorylation-deficient MORs, chronic morphine treatment resulted in tolerance to, rather than facilitation of, subsequent morphine signaling at MThal-DMS terminals, suggesting phosphorylation deficiency unmasks adaptations that counter the facilitation observed at presynaptic terminals in wild-type mice. The results of this study suggest that the effects of chronic morphine exposure are not ubiquitous; rather adaptations in MOR function may be determined by multiple factors such as subcellular receptor distribution, influence of local circuitry, and sex.


Assuntos
Analgésicos Opioides , Morfina , Masculino , Feminino , Camundongos , Animais , Morfina/farmacologia , Analgésicos Opioides/farmacologia , Fosforilação , Transdução de Sinais , Receptores Opioides , Receptores Opioides mu/agonistas
2.
bioRxiv ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824766

RESUMO

Chronic opioid exposure induces tolerance to the pain-relieving effects of opioids but sensitization to some other effects. While the occurrence of these adaptations is well-understood, the underlying cellular mechanisms are less clear. This study aimed to determine how chronic treatment with morphine, a prototypical opioid agonist, induced adaptations to subsequent morphine signaling in different subcellular contexts. Opioids acutely inhibit glutamatergic transmission from medial thalamic (MThal) inputs to the dorsomedial striatum (DMS) and anterior cingulate cortex (ACC) via activity at µ-opioid receptors (MORs). MORs are present in somatic and presynaptic compartments of MThal neurons terminating in both the DMS and ACC. We investigated the effects of chronic morphine treatment on subsequent morphine signaling at MThal-DMS synapses, MThal-ACC synapses, and MThal cell bodies in male and female mice. Surprisingly, chronic morphine treatment increased subsequent morphine inhibition of MThal-DMS synaptic transmission (morphine facilitation), but decreased subsequent morphine inhibition of transmission at MThal-ACC synapses (morphine tolerance) in a sex-specific manner; these adaptations were present in male but not female mice. Additionally, these adaptations were not observed in knockin mice expressing phosphorylation-deficient MORs, suggesting a role of MOR phosphorylation in mediating both facilitation and tolerance to morphine within this circuit. The results of this study suggest that the effects of chronic morphine exposure are not ubiquitous; rather adaptations in MOR function may be determined by multiple factors such as subcellular receptor distribution, influence of local circuitry and sex.

3.
Mol Pharmacol ; 101(5): 300-308, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35193934

RESUMO

Chronic treatment of animals with morphine results in a long lasting cellular tolerance in the locus coeruleus and alters the kinase dependent desensitization of opioid and nonopioid G protein-coupled receptors (GPCRs). This study examined the development of tolerance and altered regulation of kinase activity after chronic treatment of animals with clinically relevant opioids that differ in efficacy at the µ-opioid receptors (MOR). In slices from oxycodone treated animals, no tolerance to opioids was observed when measuring the MOR induced increase in potassium conductance, but the G protein receptor kinase 2/3 blocker, compound 101, no longer inhibited desensitization of somatostatin (SST) receptors. Chronic fentanyl treatment induced a rightward shift in the concentration response to [Met5]enkephalin, but there was no change in the kinase regulation of desensitization of the SST receptor. When total phosphorylation deficient MORs that block desensitization, internalization, and tolerance were virally expressed, chronic treatment with fentanyl resulted in the altered kinase regulation of SST receptors. The results suggest that sustained opioid receptor signaling initiates the process that results in altered kinase regulation of not only opioid receptors, but also other GPCRs. This study highlights two very distinct downstream adaptive processes that are specifically regulated by an agonist dependent mechanism. SIGNIFICANCE STATEMENT: Persistent signaling of MORs results in altered kinase regulation of nonopioid GPCRs after chronic treatment with morphine and oxycodone. Profound tolerance develops after chronic treatment with fentanyl without affecting kinase regulation. The homeostatic change in the kinase regulation of nonopioid GPCRs could account for the systems level in vivo development of tolerance that is seen with opioid agonists, such as morphine and oxycodone, that develop more rapidly than the tolerance induced by efficacious agonists, such as fentanyl and etorphine.


Assuntos
Analgésicos Opioides , Morfina , Analgésicos Opioides/farmacologia , Animais , Fentanila/farmacologia , Morfina/farmacologia , Oxicodona/farmacologia , Receptores Opioides , Receptores Opioides mu/metabolismo
4.
J Neurosci ; 42(12): 2404-2417, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35091505

RESUMO

Endogenous adenosine plays a crucial role in maintaining energy homeostasis, and adenosine levels are tightly regulated across neural circuits. In the dorsal medial striatum (DMS), adenosine inhibits neurotransmitter release, but the source and mechanism underlying its accumulation are largely unknown. Opioids also inhibit neurotransmitter release in the DMS and influence adenosine accumulation after prolonged exposure. However, how these two neurotransmitter systems interact acutely is also largely unknown. This study demonstrates that activation of µ opioid receptors, but not δ opioid receptors or κ opioid receptors, inhibits tonic activation of adenosine A1Rs via a cAMP-dependent mechanism in both male and female mice. Further, selectively knocking out µ opioid receptors from thalamic presynaptic terminals and postsynaptic medium spiny neurons (MSNs) revealed that activation of µ opioid receptors on D1R-positive MSNs, but not D2R-positive MSNs, is necessary to inhibit tonic adenosine signaling on presynaptic terminals. Given the role of D1R-positive MSNs in movement and motivated behaviors, these findings reveal a novel mechanism by which these neurons regulate their own synaptic inputs.SIGNIFICANCE STATEMENT Understanding interactions between neuromodulatory systems within brain circuits is a fundamental question in neuroscience. The present work uncovers a novel role of opioids in acutely inhibiting adenosine accumulation and subsequent adenosine receptor signaling in the striatum by inhibiting the production of cAMP. Adenosine receptor signaling regulates striatal neurotransmitters, including glutamate, GABA, dopamine, and acetylcholine. Furthermore, interactions between adenosine2A receptors and numerous other GPCRs, including D2 dopamine and CB1 cannabinoid receptors, suggest that endogenous adenosine broadly modulates striatal GPCR signaling. Additionally, this work discovered that the source of resting endogenous extracellular adenosine is likely D1, but not D2 receptor-positive medium spiny neurons, suggesting that opioid signaling and manipulation of D1R-expressing medium spiny neuron cAMP activity can broadly affect striatal function and behavior.


Assuntos
Dopamina , Ácido Glutâmico , Adenosina , Analgésicos Opioides , Animais , Corpo Estriado/fisiologia , Dopamina/fisiologia , Feminino , Masculino , Camundongos , Neurotransmissores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Opioides mu , Receptores Purinérgicos P1
5.
Mol Pharmacol ; 98(4): 401-409, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32198208

RESUMO

Electrophysiological approaches provide powerful tools to further our understanding of how different opioids affect signaling through opioid receptors; how opioid receptors modulate circuitry involved in processes such as pain, respiration, addiction, and feeding; and how receptor signaling and circuits are altered by physiologic challenges, such as injury, stress, and chronic opioid treatment. The use of genetic manipulations to alter or remove µ-opioid receptors (MORs) with anatomic and cell type specificity and the ability to activate or inhibit specific circuits through opto- or chemogenetic approaches are being used in combination with electrophysiological, pharmacological, and systems-level physiology experiments to expand our understanding of the beneficial and maladaptive roles of opioids and opioid receptor signaling. New approaches for studying endogenous opioid peptide signaling and release and the dynamics of these systems in response to chronic opioid use, pain, and stress will add another layer to our understanding of the intricacies of opioid modulation of brain circuits. This understanding may lead to new targets or approaches for drug development or treatment regimens that may affect both acute and long-term effects of manipulating the activity of circuits involved in opioid-mediated physiology and behaviors. This review will discuss recent advancements in our understanding of the role of phosphorylation in regulating MOR signaling, as well as our understanding of circuits and signaling pathways mediating physiologic behaviors such as respiratory control, and discuss how electrophysiological tools combined with new technologies have and will continue to advance the field of opioid research. SIGNIFICANCE STATEMENT: This review discusses recent advancements in our understanding of µ-opioid receptor (MOR) function and regulation and the role of electrophysiological approaches combined with new technologies in pushing the field of opioid research forward. This covers regulation of MOR at the receptor level, adaptations induced by chronic opioid treatment, sites of action of MOR modulation of specific brain circuits, and the role of the endogenous opioid system in driving physiology and behavior through modulation of these brain circuits.


Assuntos
Encéfalo/fisiologia , Peptídeos Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Receptores Opioides mu/metabolismo , Animais , Pesquisa Biomédica , Fenômenos Eletrofisiológicos , Humanos , Transtornos Relacionados ao Uso de Opioides/metabolismo , Optogenética , Fosforilação , Receptores Opioides mu/genética , Transdução de Sinais
6.
Elife ; 82019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31589142

RESUMO

Identifying neurons that have functional opioid receptors is fundamental for the understanding of the cellular, synaptic and systems actions of opioids. Current techniques are limited to post hoc analyses of fixed tissues. Here we developed a fluorescent probe, naltrexamine-acylimidazole (NAI), to label opioid receptors based on a chemical approach termed 'traceless affinity labeling'. In this approach, a high affinity antagonist naltrexamine is used as the guide molecule for a transferring reaction of acylimidazole at the receptor. This reaction generates a fluorescent dye covalently linked to the receptor while naltrexamine is liberated and leaves the binding site. The labeling induced by this reagent allowed visualization of opioid-sensitive neurons in rat and mouse brains without loss of function of the fluorescently labeled receptors. The ability to locate endogenous receptors in living tissues will aid considerably in establishing the distribution and physiological role of opioid receptors in the CNS of wild type animals.


Assuntos
Química Encefálica , Neurônios/química , Receptores Opioides/análise , Coloração e Rotulagem/métodos , Animais , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Fluorometria/métodos , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
7.
Mol Pharmacol ; 96(4): 505-514, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31383769

RESUMO

Phosphorylation of sites on the C terminus of the µ-opioid receptor (MOR) results in the induction of acute desensitization that is thought to be a precursor for the development of long-term tolerance. Alanine mutations of all 11 phosphorylation sites on the C terminus of MORs almost completely abolished desensitization and one measure of tolerance in locus coeruleus neurons when these phosphorylation-deficient MORs were virally expressed in MOR knockout rats. In the present work, we identified specific residues that underlie acute desensitization, receptor internalization, and tolerance and examined four MOR variants with different alanine or glutamate mutations in the C terminus. Alanine mutations in the sequence between amino acids 375 and 379 (STANT-3A) and the sequence between amino acids 363 and 394 having four additional alanine substitutions (STANT + 7A) reduced desensitization and two measures of long-term tolerance. After chronic morphine treatment, alanine mutations in the sequence between 354 and 357 (TSST-4A) blocked one measure of long-term tolerance (increased acute desensitization and slowed recovery from desensitization) but did not change a second (decreased sensitivity to morphine). With the expression of receptors having glutamate substitutions in the TSST sequence (TSST-4E), an increase in acute desensitization was present after chronic morphine treatment, but the sensitivity to morphine was not changed. The results show that all 11 phosphorylation sites contribute, in varying degrees, to acute desensitization and long-term tolerance. That acute desensitization and tolerance are not necessarily linked illustrates the complexity of events that are triggered by chronic treatment with morphine. SIGNIFICANCE STATEMENT: In this work, we showed that the degree of phosphorylation on the C terminus of the µ-opioid receptor alters acute desensitization and internalization, and in measures of long-term tolerance to morphine. The primary conclusion is that the degree of phosphorylation on the 11 possible sites of the C terminus has different roles for expression of the multiple adaptive mechanisms that follow acute and long-term agonist activation. Although the idea that acute desensitization and tolerance are intimately linked is generally supported, these results indicate that disruption of one phosphorylation cassette of the C terminus TSST (354-357) distinguishes the two processes.


Assuntos
Encefalina Metionina/farmacologia , Mutação , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Potenciais de Ação/efeitos dos fármacos , Alanina/metabolismo , Animais , Tolerância a Medicamentos , Feminino , Técnicas de Inativação de Genes , Ácido Glutâmico/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/genética
8.
Elife ; 82019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31099753

RESUMO

The medial thalamus (MThal), anterior cingulate cortex (ACC) and striatum play important roles in affective-motivational pain processing and reward learning. Opioids affect both pain and reward through uncharacterized modulation of this circuitry. This study examined opioid actions on glutamate transmission between these brain regions in mouse. Mu-opioid receptor (MOR) agonists potently inhibited MThal inputs without affecting ACC inputs to individual striatal medium spiny neurons (MSNs). MOR activation also inhibited MThal inputs to the pyramidal neurons in the ACC. In contrast, delta-opioid receptor (DOR) agonists disinhibited ACC pyramidal neuron responses to MThal inputs by suppressing local feed-forward GABA signaling from parvalbumin-positive interneurons. As a result, DOR activation in the ACC facilitated poly-synaptic (thalamo-cortico-striatal) excitation of MSNs by MThal inputs. These results suggest that opioid effects on pain and reward may be shaped by the relative selectivity of opioid drugs to the specific circuit components.


Assuntos
Analgésicos Opioides/metabolismo , Corpo Estriado/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Animais , Aprendizagem/efeitos dos fármacos , Camundongos , Dor , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas
9.
Elife ; 52016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892854

RESUMO

The striatum integrates excitatory inputs from the cortex and the thalamus to control diverse functions. Although the striatum is thought to consist of sensorimotor, associative and limbic domains, their precise demarcations and whether additional functional subdivisions exist remain unclear. How striatal inputs are differentially segregated into each domain is also poorly understood. This study presents a comprehensive map of the excitatory inputs to the mouse striatum. The input patterns reveal boundaries between the known striatal domains. The most posterior striatum likely represents the 4th functional subdivision, and the dorsomedial striatum integrates highly heterogeneous, multimodal inputs. The complete thalamo-cortico-striatal loop is also presented, which reveals that the thalamic subregions innervated by the basal ganglia preferentially interconnect with motor-related cortical areas. Optogenetic experiments show the subregion-specific heterogeneity in the synaptic properties of striatal inputs from both the cortex and the thalamus. This projectome will guide functional studies investigating diverse striatal functions.


Assuntos
Mapeamento Encefálico , Corpo Estriado/anatomia & histologia , Corpo Estriado/fisiologia , Animais , Camundongos , Optogenética
10.
Mol Pharmacol ; 88(4): 816-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25934731

RESUMO

Sustained activation of G protein-coupled receptors can lead to a rapid decline in signaling through acute receptor desensitization. In the case of the µ-opioid receptor (MOPr), this desensitization may play a role in the development of analgesic tolerance. It is understood that phosphorylation of MOPr promotes association with ß-arrestin proteins, which then facilitates desensitization and receptor internalization. Agonists that induce acute desensitization have been shown to induce a noncanonical high-affinity agonist binding state in MOPr, conferring a persistent memory of prior receptor activation. In the current study, live-cell confocal imaging was used to investigate the role of receptor phosphorylation in agonist binding to MOPr. A phosphorylation cluster in the C-terminal tail of MOPr was identified as a mediator of agonist-induced affinity changes in MOPr. This site is unique from the primary phosphorylation cluster responsible for ß-arrestin binding and internalization. Electrophysiologic measurements of receptor function suggest that both phosphorylation clusters may play a parallel role during acute receptor desensitization. Desensitization was unaffected by alanine mutation of either phosphorylation cluster, but was largely eliminated when both clusters were mutated. Overall, this work suggests that there are multiple effects of MOPr phosphorylation that appear to regulate MOPr function: one affecting ß-arrestin binding and a second affecting agonist binding.


Assuntos
Analgésicos Opioides/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Animais , Arrestinas/química , Arrestinas/metabolismo , Arrestinas/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , beta-Arrestinas
11.
J Neurosci ; 33(9): 4118-27, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447620

RESUMO

Prolonged exposure to high-efficacy agonists results in desensitization of the µ-opioid receptor (MOR). Desensitized receptors are thought to be unable to couple to G-proteins, preventing downstream signaling; however, the changes to the receptor itself are not well characterized. In the current study, confocal imaging was used to determine whether desensitizing conditions cause a change in agonist-receptor interactions. Using rapid solution exchange, the binding kinetics of fluorescently labeled opioid agonist, dermorphin Alexa594 (derm A594), to MORs was measured in live cells. The affinity of derm A594 binding increased after prolonged treatment of cells with multiple agonists that are known to cause receptor desensitization. In contrast, binding of a fluorescent antagonist, naltrexamine Alexa594, was unaffected by similar agonist pretreatment. The increased affinity of derm A594 for the receptor was long-lived and partially reversed after a 45 min wash. Treatment of the cells with pertussis toxin did not alter the increase in affinity of the derm A594 for MOR. Likewise, the affinity of derm A594 for MORs expressed in mouse embryonic fibroblasts derived from arrestin 1 and 2 knock-out animals increased after treatment of the cells with the desensitization protocol. Thus, opioid receptors were "imprinted" with a memory of prior agonist exposure that was independent of G-protein activation or arrestin binding that altered subsequent agonist-receptor interactions. The increased affinity suggests that acute desensitization results in a long-lasting but reversible conformational change in the receptor.


Assuntos
Membrana Celular/metabolismo , Fenômenos Farmacológicos/efeitos dos fármacos , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacocinética , Análise de Variância , Animais , Arrestina/deficiência , Arrestina/metabolismo , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacocinética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Células HEK293 , Humanos , Ligantes , Camundongos , Camundongos Knockout , Morfina/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacocinética , Antagonistas de Entorpecentes/farmacocinética , Peptídeos Opioides/farmacocinética , Compostos Orgânicos/farmacocinética , Toxina Pertussis/farmacologia , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Ensaio Radioligante , Receptores Opioides mu/genética , Especificidade por Substrato/efeitos dos fármacos , Fatores de Tempo , Transfecção , Trítio/farmacocinética
12.
Neuron ; 68(4): 739-49, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21092862

RESUMO

Ischemic pain--examples include the chest pain of a heart attack and the leg pain of a 30 s sprint--occurs when muscle gets too little oxygen for its metabolic need. Lactic acid cannot act alone to trigger ischemic pain because the pH change is so small. Here, we show that another compound released from ischemic muscle, adenosine tri-phosphate (ATP), works together with acid by increasing the pH sensitivity of acid-sensing ion channel number 3 (ASIC3), the molecule used by sensory neurons to detect lactic acidosis. Our data argue that ATP acts by binding to P2X receptors that form a molecular complex with ASICs; the receptor on sensory neurons appears to be P2X5, an electrically quiet ion channel. Coincident detection of acid and ATP should confer sensory selectivity for ischemia over other conditions of acidosis.


Assuntos
Trifosfato de Adenosina/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/inervação , Receptores Purinérgicos P2X5/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Acidose Láctica/metabolismo , Acidose Láctica/fisiopatologia , Trifosfato de Adenosina/fisiologia , Sequência de Aminoácidos , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Isquemia/fisiopatologia , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X5/fisiologia , Células Receptoras Sensoriais/patologia , Células Receptoras Sensoriais/fisiologia , Canais de Sódio/fisiologia
13.
Nature ; 460(7255): 592-8, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19641588

RESUMO

P2X receptors are cation-selective ion channels gated by extracellular ATP, and are implicated in diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste and pain. Because P2X receptors are not related to other ion channel proteins of known structure, there is at present no molecular foundation for mechanisms of ligand-gating, allosteric modulation and ion permeation. Here we present crystal structures of the zebrafish P2X(4) receptor in its closed, resting state. The chalice-shaped, trimeric receptor is knit together by subunit-subunit contacts implicated in ion channel gating and receptor assembly. Extracellular domains, rich in beta-strands, have large acidic patches that may attract cations, through fenestrations, to vestibules near the ion channel. In the transmembrane pore, the 'gate' is defined by an approximately 8 A slab of protein. We define the location of three non-canonical, intersubunit ATP-binding sites, and suggest that ATP binding promotes subunit rearrangement and ion channel opening.


Assuntos
Canais Iônicos/química , Modelos Moleculares , Receptores Purinérgicos P2/química , Proteínas de Peixe-Zebra/química , Peixe-Zebra/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Gadolínio/metabolismo , Humanos , Canais Iônicos/antagonistas & inibidores , Proteínas de Membrana/química , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Antagonistas do Receptor Purinérgico P2 , Receptores Purinérgicos P2X4 , Proteínas de Peixe-Zebra/antagonistas & inibidores
14.
J Neurosci ; 29(22): 7341-8, 2009 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-19494155

RESUMO

Buprenorphine is a weak partial agonist at mu-opioid receptors that is used for treatment of pain and addiction. Intracellular and whole-cell recordings were made from locus ceruleus neurons in rat brain slices to characterize the actions of buprenorphine. Acute application of buprenorphine caused a hyperpolarization that was prevented by previous treatment of slices with the irreversible opioid antagonist beta-chlornaltrexamine (beta-CNA) but was not reversed by a saturating concentration of naloxone. As expected for a partial agonist, subsaturating concentrations of buprenorphine decreased the [Met](5)enkephalin (ME)-induced hyperpolarization or outward current. When the ME-induced current was decreased below a critical value, desensitization and internalization of mu-opioid receptors was eliminated. The inhibition of desensitization by buprenorphine was not the result of previous desensitization, slow dissociation from the receptor, or elimination of receptor reserve. Treatment of slices with subsaturating concentrations of etorphine, methadone, oxymorphone, or beta-CNA also reduced the current induced by ME but did not block ME-induced desensitization. Treatment of animals with buprenorphine for 1 week resulted in the inhibition of the current induced by ME and a block of desensitization that was not different from the acute application of buprenorphine to brain slices. These observations show the unique characteristics of buprenorphine and further demonstrate the range of agonist-selective actions that are possible through G-protein-coupled receptors.


Assuntos
Buprenorfina/farmacologia , Entorpecentes/farmacologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores Opioides mu/metabolismo , Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Análise de Variância , Animais , Biofísica , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Tartarato de Brimonidina , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Encefalina Metionina/farmacologia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Inibição Neural/genética , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/agonistas , Receptores Opioides mu/deficiência , Ioimbina/farmacologia
15.
Proc Natl Acad Sci U S A ; 100(16): 9202-7, 2003 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12872005

RESUMO

Carboxyl-terminal binding protein (CtBP) is a transcriptional corepressor originally identified through its ability to interact with adenovirus E1A. The finding that CtBP-E1A interactions were regulated by the nicotinamide adeninine dinucleotides NAD+ and NADH raised the possibility that CtBP could serve as a nuclear redox sensor. This model requires differential binding affinities of NAD+ and NADH, which has been controversial. The structure of CtBP determined by x-ray diffraction revealed a tryptophan residue adjacent to the proposed nicotinamide adenine dinucleotide binding site. We find that this tryptophan residue shows strong fluorescence resonance energy transfer to bound NADH. In this report, we take advantage of these findings to measure the dissociation constants for CtBP with NADH and NAD+. The affinity of NADH was determined by using fluorescence resonance energy transfer. The binding of NADH to protein is associated with an enhanced intensity of NADH fluorescence and a blue shift in its maximum. NAD+ affinity was estimated by measuring the loss of the fluorescence blue shift as NADH dissociates on addition of NAD+. Our studies show a >100-fold higher affinity of NADH than NAD+, consistent with the proposed function of CtBP as a nuclear redox sensor. Moreover, the concentrations of NADH and NAD+ required for half-maximal binding are approximately the same as their concentrations in the nuclear compartment. These findings support the possibility that changes in nuclear nicotinamide adenine dinucleotides could regulate the functions of CtBP in cell differentiation, development, or transformation.


Assuntos
Proteínas de Ligação a DNA/química , NAD/metabolismo , Fosfoproteínas/química , Transcrição Gênica , Oxirredutases do Álcool , Animais , Sítios de Ligação , Diferenciação Celular , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , Oxirredução , Fosfoproteínas/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Triptofano/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...