Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5721, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459089

RESUMO

In this work, localized surface plasmon resonance (LSPR) sensing as applicable in the detection of Trenbolone acetate dopant is demonstrated. We show that the LSPR of the Trenbolone acetate/silver nanoparticle (Tren Ac/AgNPs) complex is sensitive to changes in the adsorbent concentration. The results show an average redshift of + 18 nm in the LSPR peak with variations in intensity and broadening behavior of the LSPR band of the Tren Ac/AgNPs complex. AgNPs were synthesized using laser ablation in liquid (LAL) technique with water as the solvent. UV-Vis spectroscopy was used for absorbance measurements and particle size and morphology were monitored using scanning electron microscopy (SEM). The aggregation behavior of the Tren Ac/AgNPs complex was monitored using energy-dispersive X-ray spectroscopy (EDS). Molecular Electrostatic Potential (MEP) and the HOMO-LUMO orbitals of the optimized Trenbolone acetate structure were obtained using Density Function Theory (DFT). The molecule was optimized at the B3LYP level of theory using the 6-311 basis set carried out using the Gaussian 09 software package. The results showed that O2- is Trenbolone acetate's active site that would interact with Ag+ to form a complex that would influence the plasmon behavior. The results presented in this work demonstrate the feasibility of LSPR for anabolic androgenic steroid detection.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122694, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030254

RESUMO

This research describes the use of surface-enhanced Raman spectroscopy (SERS) substrates based on colloidal silver nanoparticles (AgNPs) produced by laser ablation of silver granules in pure water that are inexpensive, easy to make, and chemically stable. Here, the effects of the laser power, pulse repetition frequency, and ablation duration on the Surface Plasmon Resonance peak of AgNPs solutions, were used to determine the optimal parameters. Also, the effects of the laser ablation time on both ablation efficiency and SERS enhancement were studied. The synthesized AgNPs were characterized by UV-Vis spectrophotometer, Scanning Electron Microscope (SEM), and Raman spectrometer. The Surface Plasmon Resonance peak of AgNP solutions was centered at 404 nm confirming their synthesis and they were noted to be spherical with 34 nm in diameter. Using Raman spectroscopy, they had main bands centered at 196 cm-1 (O = Ag2/Ag-N stretching vibrations), 568 cm-1 (NH out of plane bending); 824 cm-1 (symmetric deformation of the NO2); 1060 cm-1 (NH out of plane bending); 1312 cm-1 (symmetric stretching of NO2); 1538 cm-1 (NH in-plane bending); and 2350 cm-1 (N2 vibrations). Their Raman spectral profiles remained constant within the first few days of storage at room temperature implying chemical stability. The Raman signals from blood were enhanced when mixed with AgNPs and this depended on colloidal AgNPs concentration. Using those generated by 12 h ablation time, an enhancement of 14.95 was achieved. Additionally, these substrates had an insignificant impact on the Raman profiles of samples of rat blood when mixed with them. The Raman peaks noted were attributed to CC stretching of glucose (932 cm-1); CC stretching of Tryptophan (1064 cm-1); CC stretching of ß Carotene (1190 cm-1); CH2 wagging of proteins (1338 and 1410 cm-1); carbonyl stretch for proteins (1650 cm-1); CN vibrations for glycoproteins (2122 cm-1). These SERS substrates can be applied to areas such as forensics to distinguish between human and other animal blood, monitoring of the efficacy of drugs, disease diagnostics such as diabetes, and pathogen detection. All this can be achieved by comparing the Raman spectra of the biological samples mixed with the synthesized SERS substrates for different samples. Thus, the results on the use of inexpensive, simple-to-prepare Raman substrates have the possibility of making surface-enhanced Raman spectroscopy available to laboratories with scarce resources in developing nations.


Assuntos
Terapia a Laser , Nanopartículas Metálicas , Animais , Humanos , Ratos , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Prata/química , Dióxido de Nitrogênio
3.
Anal Bioanal Chem ; 414(8): 2757-2766, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35141764

RESUMO

Abscisic acid (ABA), as the most common plant hormone in the growth of wheat, can greatly affect the yield when its levels deviate from normal. Therefore, highly sensitive and selective detection of this hormone is greatly needed. In this work, we developed an aptamer sensor based on surface-enhanced Raman spectroscopy (SERS) and applied it for the high sensitivity detection of ABA. Biotin-modified ABA aptamer complement chains were modified on ferrosoferric oxide magnetic nanoparticles (Fe3O4MNPs) and acted as capture probes, and sulfhydryl aptamer (SH-Apt)-modified silver-coated gold nanospheres (Au@Ag NPs) were used as signal probes. Through the recognition of the ABA aptamer and its complementary chains, an aptamer sensor based on SERS was constructed. As SERS internal standard molecules of 4-mercaptobenzoic acid (4-MBA) were encapsulated between the gold core and silver shell of the signal probes; the constructed aptamer sensor generated a strong SERS signal of 4-MBA after magnetic separation. When there were ABA molecules in the detection system, with the preferential binding of ABA aptamer and ABA molecule, the signal probes were released from the capture probes, after magnetic separation, leading to a linear decrease in SERS intensity of 4-MBA. Thus, the detection response was linear over a logarithmic concentration range, with an ultra-low detection limit of 0.67 fM. In addition, the practical use of this assay method was demonstrated in ABA detection from fresh wheat leaves, with a relative error (RE) of 5.43-8.94% when compared with results from enzyme-linked immunosorbent assay (ELISA). The low RE value proves that the aptamer sensor will be a promising method for ABA detection.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Ácido Abscísico , Aptâmeros de Nucleotídeos/química , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Reguladores de Crescimento de Plantas , Análise Espectral Raman/métodos
4.
Front Plant Sci ; 12: 810214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095982

RESUMO

Nitrate nitrogen ( NO 3 - -N) in the soil is one of the important nutrients for growing crops. During the period of precipitation or irrigation, an excessive NO 3 - -N readily causes its leaching or runoff from the soil surface to rivers due to inaccurate fertilization and water management, leading to non-point source pollution. In general, the measurement of the NO 3 - -N relies upon the laboratory-based absorbance, which is often time-consuming, therefore not suitable for the rapid measurements in the field directly. Ion-selective electrodes (ISEs) support the possibility of NO 3 - -N measurement by measuring the nitrate ( NO 3 - ) ions in soil quickly and accurately due to the high water solubility and mobility of NO 3 - ions. However, such a method suffers from a complicated calibration to remove the influences caused by both temperature and other ions in the measured solution, thus limiting field use. In this study, a kind of all-solid ISE system combined with a temperature sensor and a pH electrode is proposed to automatically measure the concentrations of the NO 3 - -N. In this study, a soil water content calibration function was established, which significantly reduces a relative error (RE) by 13.09%. The experimental results showed that the stabilization time of this electrode system was less than 15 s with a slope of -51.63 mV/decade in the linear range of 10-5-10-2.2 mol/L. Both the limit of detection of 0.5 ppm of the NO 3 - -N and a relative SD of less than 3% were obtained together with the recovery rate of 90-110%. Compared with the UV-Vis spectroscopy method, a correlation coefficient (R 2) of 0.9952 was obtained. The performances of this all-solid ISE system are satisfied for measuring the NO 3 - -N in the field.

5.
PLoS One ; 15(9): e0239632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970749

RESUMO

In recent years, there has been growing concern among consumers about pesticide contamination in fruits. Therefore, rapid, reliable, and consistent detection methods for OPPs, especially dimethoate, are crucially needed. The existing quantitative methods for detecting dimethoate are not suitable for rapid measuring system such as the dimethoate samples from two channels. Hence this paper examines the utilization of a dual-channel system for utilize the absorption variations of the Localized Surface Plasmon Resonance (LSPR) bands of gold nanoparticles (AuNPs) were investigate for detection of dimethoate. Under optimized conditions, the relationship between concentrations of dimethoate and absorbance ratios (A(520)/A(640)) was linearly found in the concentration range of 10-100 nM. Result from the experiment shows that both channels exhibit a linear correlation coefficient as high as 0.97 and a limit of detection (LOD) as low as 5.5 nM. This LSPR detection system was characterized by testing the dimethoate in apple samples and the recovery rates were found to be in the range of 85.90% to 107.37%. The proposed dual-channel LSPR system for detecting dimethoate creating a new approach for detecting organophosphate insecticide in agricultural fields. It could lay the foundation for designing a high-throughput analysis of the insecticides using a wavelength division multiplexing switch (WDMS).


Assuntos
Produtos Agrícolas/normas , Dimetoato/análise , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Frutas/normas , Inseticidas/análise , Ressonância de Plasmônio de Superfície/métodos , Produtos Agrícolas/química , Análise de Alimentos/normas , Frutas/química , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/normas
6.
Mikrochim Acta ; 187(1): 20, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31807965

RESUMO

A multi-channel localized surface plasmon resonance system is described for absorptiometric determination of abscisic acid (ABA). The system is making use of gold nanoparticles and consists of a broadband light source, a multi-channel alignment device, and a fiber spectrometer. The method is based on the specific interaction between an ABA-binding aptamer and ABA. This induces the growth of gold nanoparticles (AuNPs) functionalized with a polyadenine-tailed aptamer that act as optical probes. Different concentrations of ABA give rise to varied morphologies of grown AuNPs. This causes a change of absorption spectra which is recorded by the system. ABA can be quantified by measurement of the peak wavelength shifts of grown AuNPs. Under optimized conditions, this method shows a linear relationship in the 1 nM to 10 µM ABA concentration range. The detection limit is 0.51 nM. The sensitivity of the ABA assay is strongly improved compared to the method based on salt-induced AuNP aggregation. This is attributed to the use of a poly-A-tailed aptamer and the catalytic ability of AuNPs. In the actual application, the ABA concentration of ABA in fresh leaves of rice is measured with the maximum relative error of 8.03% in comparison with the ELISA method. Graphical abstractSchematic representation of an absorptiometric approach for determination of abscisic acid based on the growth of polyA-tailed aptamer-AuNPs probes and a multi-channel localized surface plasmon resonance system.


Assuntos
Ácido Abscísico/análise , Aptâmeros de Nucleotídeos/química , Ouro/química , Nanopartículas Metálicas/química , Poli A/química , Ressonância de Plasmônio de Superfície/métodos , Ácido Abscísico/química , Ácido Abscísico/metabolismo , Absorção Fisico-Química , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Oryza/química
7.
PLoS One ; 12(9): e0185130, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28926628

RESUMO

Diabetes is an irreversible condition characterized by elevated blood glucose levels. Currently, there are no predictive biomarkers for this disease and the existing ones such as hemoglobin A1c and fasting blood glucose are used only when diabetes symptoms are noticed. The objective of this work was first to explore the potential of leucine and isoleucine amino acids as diabetes type 2 biomarkers using their Raman spectroscopic signatures. Secondly, we wanted to explore whether Raman spectroscopy can be applied in comparative efficacy studies between commercially available anti-diabetic drug pioglitazone and the locally used anti-diabetic herbal extract Momordica spinosa (Gilg.)Chiov. Sprague Dawley (SD) rat's blood was used and were pipetted onto Raman substrates prepared from conductive silver paste smeared glass slides. Prominent Raman bands associated with glucose (926, 1302, 1125 cm-1), leucine (1106, 1248, 1302, 1395 cm-1) and isolecucine (1108, 1248, 1437 and 1585 cm-1) were observed. The Raman bands centered at 1125 cm-1, 1395 cm-1 and 1437 cm-1 associated respectively to glucose, leucine and isoleucine were chosen as biomarker Raman peaks for diabetes type 2. These Raman bands displayed decreased intensities in blood from diabetic SD rats administered antidiabetic drugs pioglitazone and herbal extract Momordica spinosa (Gilg.)Chiov. The intensity decrease indicated reduced concentration levels of the respective biomarker molecules: glucose (1125 cm-1), leucine (1395 cm-1) and isoleucine (1437 cm-1) in blood. The results displayed the power and potential of Raman spectroscopy in rapid (10 seconds) diabetes and pre-diabetes screening in blood (human or rat's) with not only glucose acting as a biomarker but also leucine and isoleucine amino-acids where intensities of respectively assigned bands act as references. It also showed that using Raman spectroscopic signatures of the chosen biomarkers, the method can be an alternative for performing comparative efficacy studies between known and new anti-diabetic drugs. Reports on use of Raman spectroscopy in type 2 diabetes mellitus screening with Raman bands associated with leucine and isoleucine molecules acting as reference is rare in literature. The use of Raman spectroscopy in pre-diabetes screening of blood for changes in levels of leucine and isoleucine amino acids is particularly interesting as once elevated levels are noticed, necessary interventions to prevent diabetes development can be initiated.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico , Isoleucina/sangue , Leucina/sangue , Análise Espectral Raman , Animais , Biomarcadores/sangue , Glicemia/análise , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/veterinária , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Isoleucina/química , Leucina/química , Momordica/química , Momordica/metabolismo , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Ratos , Ratos Sprague-Dawley
8.
Anal Bioanal Chem ; 409(12): 3253-3259, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28255920

RESUMO

We report on application of conductive silver paste smeared glass slides as Raman spectroscopy sample substrates for label-free detection of HIV-1 p24 antigen in blood plasma. We also show that the same substrates can be applied in Raman spectroscopic screening of blood plasma for presence of HIV. The characteristic Raman spectrum of HIV-1 p24 antigen displayed prominent bands that were assigned to ribonucleic acids (RNA) and proteins that constitute the antigen. This spectrum can be used as reference during Raman spectroscopic screening for HIV in plasma within the first few days after exposure (<7 days). The Raman spectra obtained from HIV+ plasma displayed unique peaks centered at wavenumbers 928, 990, 1270, 1397, and 1446 cm-1 attributed to the Raman active vibrations in the virion carbohydrates, lipids, and proteins. Other bands similar to those reported in literature were also seen and assignments made. The attachment of the HIV virions to silver nanoparticles via gp120 glycoprotein knobs was thought to be responsible for the enhanced Raman signals of proteins associated with the virus. The principal component analysis (PCA) applied on the combined spectral data showed that HIV- and HIV+ spectra had differing spectral patterns. This indicated the great power of Raman spectroscopy in HIV detection when plasma samples are deposited onto silver paste smeared glass substrates. The Raman peaks responsible for the segregation of the spectral data in PCA were mainly those assigned to the viral proteins (645, 725, 813, 1270, and 1658 cm-1). Excellent results were obtained from Artificial Neural Network (ANN) applied on the HIV+ Raman spectral data around the prominent peak centered at 1270 cm-1 with R (coefficient of correlation) and R 2 (coefficient of determination) values of 0.9958 and 0.9895, respectively. The method has the potential of being used as quick blood screening for HIV before blood transfusion with the Raman peaks assigned to the virion proteins acting as reference. Graphical Abstract The HIV type 1 virus particle gets attached to the silver nanoparticle contained in the conductive silver paste smear onto a glass slide. This results in strong Raman signals associated with the components of the virion. The signals are collected, dispersed in a spectrometer and displayed on a computer screen. Method can be used as a label-free and rapid HIV screening in blood plasma.


Assuntos
Proteína do Núcleo p24 do HIV/sangue , Infecções por HIV/sangue , HIV-1/isolamento & purificação , Prata/química , Análise Espectral Raman/métodos , Desenho de Equipamento , Vidro/química , Humanos , Nanopartículas Metálicas/química , Análise de Componente Principal , Análise Espectral Raman/instrumentação
9.
J Chem Phys ; 140(11): 114501, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24655187

RESUMO

Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states S(n) on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S1 on a 40 ps timescale. The high energy Davydov component of the S1 exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...