Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 73(19): 6891-6901, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35904136

RESUMO

ATP, produced by the light reactions of photosynthesis, acts as the universal cellular energy cofactor fuelling all life processes. Chloroplast ATP synthase produces ATP using the proton motive force created by solar energy-driven thylakoid electron transport reactions. Here we investigate how increasing abundance of ATP synthase affects leaf photosynthesis and growth of rice, Oryza sativa variety Kitaake. We show that overexpression of AtpD, the nuclear-encoded subunit of the chloroplast ATP synthase, stimulates both abundance of the complex, confirmed by immunodetection of thylakoid complexes separated by Blue Native-PAGE, and ATP synthase activity, detected as higher proton conductivity of the thylakoid membrane. Plants with increased AtpD content had higher CO2 assimilation rates when a stepwise increase in CO2 partial pressure was imposed on leaves at high irradiance. Fitting of the CO2 response curves of assimilation revealed that plants overexpressing AtpD had a higher electron transport rate (J) at high CO2, despite having wild-type-like abundance of the cytochrome b6f complex. A higher maximum carboxylation rate (Vcmax) and lower cyclic electron flow detected in transgenic plants both pointed to an increased ATP production compared with wild-type plants. Our results present evidence that the activity of ATP synthase modulates the rate of electron transport at high CO2 and high irradiance.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons , Oryza , ATPases de Cloroplastos Translocadoras de Prótons/genética , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Oryza/genética , Oryza/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Transporte de Elétrons , Trifosfato de Adenosina
2.
BMC Genomics ; 19(1): 261, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29665776

RESUMO

Upon publication of the original article [1], the authors had flagged that Fig. 1 had been published twice, as both Fig. 1 and Additional file 3.

3.
BMC Genomics ; 18(1): 539, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720072

RESUMO

BACKGROUND: Knowledge of plant secondary cell wall (SCW) regulation and deposition is mainly based on the Arabidopsis model of a 'typical' lignocellulosic SCW. However, SCWs in other plants can vary from this. The SCW of mature cotton seed fibres is highly cellulosic and lacks lignification whereas xylem SCWs are lignocellulosic. We used cotton as a model to study different SCWs and the expression of the genes involved in their formation via RNA deep sequencing and chemical analysis of stem and seed fibre. RESULTS: Transcriptome comparisons from cotton xylem and pith as well as from a developmental series of seed fibres revealed tissue-specific and developmentally regulated expression of several NAC transcription factors some of which are likely to be important as top tier regulators of SCW formation in xylem and/or seed fibre. A so far undescribed hierarchy was identified between the top tier NAC transcription factors SND1-like and NST1/2 in cotton. Key SCW MYB transcription factors, homologs of Arabidopsis MYB46/83, were practically absent in cotton stem xylem. Lack of expression of other lignin-specific MYBs in seed fibre relative to xylem could account for the lack of lignin deposition in seed fibre. Expression of a MYB103 homolog correlated with temporal expression of SCW CesAs and cellulose synthesis in seed fibres. FLAs were highly expressed and may be important structural components of seed fibre SCWs. Finally, we made the unexpected observation that cell walls in the pith of cotton stems contained lignin and had a higher S:G ratio than in xylem, despite that tissue's lacking many of the gene transcripts normally associated with lignin biosynthesis. CONCLUSIONS: Our study in cotton confirmed some features of the currently accepted gene regulatory cascade for 'typical' plant SCWs, but also revealed substantial differences, especially with key downstream NACs and MYBs. The lignocellulosic SCW of cotton xylem appears to be achieved differently from that in Arabidopsis. Pith cell walls in cotton stems are compositionally very different from that reported for other plant species, including Arabidopsis. The current definition of a 'typical' primary or secondary cell wall might not be applicable to all cell types in all plant species.


Assuntos
Parede Celular/metabolismo , Perfilação da Expressão Gênica , Gossypium/citologia , Gossypium/genética , Celulose/biossíntese , Gossypium/metabolismo , Especificidade de Órgãos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Propanóis/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
Methods Enzymol ; 555: 271-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25747485

RESUMO

In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme ß-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material.


Assuntos
Proteínas de Arabidopsis/metabolismo , Carbono-Oxigênio Liases/metabolismo , Dioxigenases/metabolismo , Sulfeto de Hidrogênio/metabolismo , Liases/metabolismo , Mitocôndrias/enzimologia , Arabidopsis/química , Arabidopsis/enzimologia , Proteínas de Arabidopsis/isolamento & purificação , Carbono-Oxigênio Liases/isolamento & purificação , Dioxigenases/isolamento & purificação , Ensaios Enzimáticos , Cinética , Liases/isolamento & purificação , Serina O-Acetiltransferase/química
5.
Plant Cell Physiol ; 56(2): 358-67, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25416292

RESUMO

Sulfide is the end-product of assimilatory sulfate reduction in chloroplasts. It is then used by O-acetylserine(thiol)lyase (OAS-TL) to produce cysteine, the source of reduced sulfur in plants. While its formation in chloroplasts is essential for plant metabolism, sulfide is also a potent toxin mainly targeting respiration in mitochondria. Here, the application of sublethal concentrations of sulfide to Arabidopsis thaliana was used to by-pass assimilatory sulfate reduction, resulting in down-regulation of most genes of the pathway. The dualism of sulfide as substrate and toxin was investigated using knock-out mutants of the chloroplast-, mitochondrion- and cytosol-targeted OAS-TL isoforms. Surprisingly, growth retardation due to intoxication by sulfide was independent of the presence or absence of the three OAS-TL isoforms, indicating rapid exchange towards sulfur homoeostasis between the compartments. Cysteine, glutathione and sulfate, and less so S-sulfocysteine, were identified as major sinks for excess sulfide in wild-type plants. Additionally, the concentration of thiosulfate increased 1,000-fold, pointing towards a significant function of thiosulfate formation during H2S exposure. Synthesis of cysteine in the cytosol was found to be particularly important for accumulation of sulfite, sulfate and thiosulfate, indicating an important role for cytosolic OAS-TL for the re-oxidation of sulfide. The results show that thiosulfate and sulfate accumulation is strongly linked to cytosolic cysteine synthesis and that scavenging of sulfide by cysteine synthesis enhances sulfur compound accumulation. However, lack of cysteine synthesis in a subcellular compartment has no crucial consequences for toxicity and subsequent growth retardation.


Assuntos
Arabidopsis/metabolismo , Compartimento Celular/efeitos dos fármacos , Cisteína/biossíntese , Homeostase/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Enxofre/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono-Oxigênio Liases/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Modelos Biológicos , Desenvolvimento Vegetal/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade , Compostos de Sulfidrila/metabolismo
6.
Plant Physiol ; 165(1): 92-104, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24692429

RESUMO

The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine.


Assuntos
Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/enzimologia , Metabolismo dos Carboidratos , Dioxigenases/metabolismo , Mitocôndrias/enzimologia , Sementes/embriologia , Arabidopsis/crescimento & desenvolvimento , DNA Bacteriano/genética , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Mutagênese Insercional/genética , Oxirredução , Fenótipo , Sementes/enzimologia , Especificidade por Substrato , Sulfetos/metabolismo , Sulfitos/metabolismo , Enxofre/metabolismo
7.
Plant Physiol ; 163(2): 959-72, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24001608

RESUMO

The synthesis of cysteine (Cys) is a master control switch of plant primary metabolism that coordinates the flux of sulfur with carbon and nitrogen metabolism. In Arabidopsis (Arabidopsis thaliana), nine genes encode for O-acetylserine(thiol)lyase (OAS-TL)-like proteins, of which the major isoforms, OAS-TL A, OAS-TL B, and OAS-TL C, catalyze the formation of Cys by combining O-acetylserine and sulfide in the cytosol, the plastids, and the mitochondria, respectively. So far, the significance of individual OAS-TL-like enzymes is unresolved. Generation of all major OAS-TL double loss-of-function mutants in combination with radiolabeled tracer studies revealed that subcellular localization of OAS-TL proteins is more important for efficient Cys synthesis than total cellular OAS-TL activity in leaves. The absence of oastl triple embryos after targeted crosses indicated the exclusiveness of Cys synthesis by the three major OAS-TLs and ruled out alternative sulfur fixation by other OAS-TL-like proteins. Analyses of oastlABC pollen demonstrated that the presence of at least one functional OAS-TL isoform is essential for the proper function of the male gametophyte, although the synthesis of histidine, lysine, and tryptophan is dispensable in pollen. Comparisons of oastlABC pollen derived from genetically different parent plant combinations allowed us to separate distinct functions of Cys and glutathione in pollen and revealed an additional role of glutathione for pollen germination. In contrast, female gametogenesis was not affected by the absence of major OAS-TLs, indicating significant transport of Cys into the developing ovule from the mother plant.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/fisiologia , Carbono-Oxigênio Liases/metabolismo , Cisteína/biossíntese , Fertilização/fisiologia , Pólen/enzimologia , Pólen/fisiologia , Arabidopsis/genética , Segregação de Cromossomos , Cruzamentos Genéticos , Dosagem de Genes/genética , Germinação/fisiologia , Mutação/genética , Fenótipo , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo , Sobrevivência de Tecidos , Trítio/metabolismo
8.
Biochem J ; 445(2): 275-83, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22551219

RESUMO

In higher plants, biosynthesis of cysteine is catalysed by OAS-TL [O-acetylserine(thiol)lyase], which replaces the activated acetyl group of O-acetylserine with sulfide. The enzyme is present in cytosol, plastids and mitochondria of plant cells. The sole knockout of mitochondrial OAS-TL activity (oastlC) leads to significant reduction of growth in Arabidopsis thaliana. The reason for this phenotype is still enigmatic, since mitochondrial OAS-TL accounts only for approximately 5% of total OAS-TL activity. In the present study we demonstrate that sulfide specifically intoxicates Complex IV activity, but not electron transport through Complexes II and III in isolated mitochondria of oastlC plants. Loss of mitochondrial OAS-TL activity resulted in significant inhibition of dark respiration under certain developmental conditions. The abundance of mitochondrially encoded proteins and Fe-S cluster-containing proteins was not affected in oastlC. Furthermore, oastlC seedlings were insensitive to cyanide, which is detoxified by ß-cyano-alanine synthase in mitochondria at the expense of cysteine. These results indicate that in situ biosynthesis of cysteine in mitochondria is not mandatory for translation, Fe-S cluster assembly and cyanide detoxification. Finally, we uncover an OAS-TL-independent detoxification system for sulfide in mitochondria of Arabidopsis that allows oastlC plants to cope with high sulfide levels caused by abiotic stresses.


Assuntos
Arabidopsis/metabolismo , Carbono-Oxigênio Liases/metabolismo , Cisteína/biossíntese , Inativação Metabólica , Mitocôndrias/metabolismo , Sulfetos/metabolismo , Carbono-Oxigênio Liases/genética , Cianetos/metabolismo , Citosol/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Fenótipo , Plastídeos/metabolismo , Plântula/metabolismo , Serina/análogos & derivados , Serina/metabolismo
9.
Protoplasma ; 249 Suppl 2: S147-55, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22543690

RESUMO

In the vascular plant Arabidopsis thaliana, synthesis of cysteine and its precursors O-acetylserine and sulfide is distributed between the cytosol, chloroplasts, and mitochondria. This compartmentation contributes to regulation of cysteine synthesis. In contrast to Arabidopsis, cysteine synthesis is exclusively restricted to chloroplasts in the unicellular green alga Chlamydomonas reinhardtii. Thus, the question arises, whether specification of compartmentation was driven by multicellularity and specified organs and tissues. The moss Physcomitrella patens colonizes land but is still characterized by a simple morphology compared to vascular plants. It was therefore used as model organism to study evolution of compartmented cysteine synthesis. The presence of O-acetylserine(thiol)lyase (OAS-TL) proteins, which catalyze the final step of cysteine synthesis, in different compartments was applied as criterion. Purification and characterization of native OAS-TL proteins demonstrated the presence of five OAS-TL protein species encoded by two genes in Physcomitrella. At least one of the gene products is dual targeted to plastids and cytosol, as shown by combination of GFP fusion localization studies, purification of chloroplasts, and identification of N termini from native proteins. The bulk of OAS-TL protein is targeted to plastids, whereas there is no evidence for a mitochondrial OAS-TL isoform and only a minor part of OAS-TL protein is localized in the cytosol. This demonstrates that subcellular diversification of cysteine synthesis is already initialized in Physcomitrella but appears to gain relevance later during evolution of vascular plants.


Assuntos
Compartimento Celular , Cisteína/biossíntese , Processos Fototróficos , Proteínas de Plantas/metabolismo , Frações Subcelulares/metabolismo , Enxofre/metabolismo
10.
J Biol Chem ; 285(43): 32810-32817, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20720017

RESUMO

Cysteine synthesis in bacteria and plants is catalyzed by serine acetyltransferase (SAT) and O-acetylserine (thiol)-lyase (OAS-TL), which form the hetero-oligomeric cysteine synthase complex (CSC). In plants, but not in bacteria, the CSC is assumed to control cellular sulfur homeostasis by reversible association of the subunits. Application of size exclusion chromatography, analytical ultracentrifugation, and isothermal titration calorimetry revealed a hexameric structure of mitochondrial SAT from Arabidopsis thaliana (AtSATm) and a 2:1 ratio of the OAS-TL dimer to the SAT hexamer in the CSC. Comparable results were obtained for the composition of the cytosolic SAT from A. thaliana (AtSATc) and the cytosolic SAT from Glycine max (Glyma16g03080, GmSATc) and their corresponding CSCs. The hexameric SAT structure is also supported by the calculated binding energies between SAT trimers. The interaction sites of dimers of AtSATm trimers are identified using peptide arrays. A negative Gibbs free energy (ΔG = -33 kcal mol(-1)) explains the spontaneous formation of the AtCSCs, whereas the measured SAT:OAS-TL affinity (K(D) = 30 nm) is 10 times weaker than that of bacterial CSCs. Free SAT from bacteria is >100-fold more sensitive to feedback inhibition by cysteine than AtSATm/c. The sensitivity of plant SATs to cysteine is further decreased by CSC formation, whereas the feedback inhibition of bacterial SAT by cysteine is not affected by CSC formation. The data demonstrate highly similar quaternary structures of the CSCs from bacteria and plants but emphasize differences with respect to the affinity of CSC formation (K(D)) and the regulation of cysteine sensitivity of SAT within the CSC.


Assuntos
Arabidopsis/enzimologia , Cisteína Sintase/química , Mitocôndrias/enzimologia , Proteínas de Plantas/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cisteína/química , Cisteína/metabolismo , Cisteína Sintase/metabolismo , Proteínas de Plantas/metabolismo , Estrutura Quaternária de Proteína , Glycine max/enzimologia
11.
Mol Plant ; 2(1): 152-65, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19529832

RESUMO

In order to assess the functional roles of heat stress-induced class B-heat shock factors in Arabidopsis, we investigated T-DNA knockout mutants of AtHsfB1 and AtHsfB2b. Micorarray analysis of double knockout hsfB1/hsfB2b plants revealed as strong an up-regulation of the basal mRNA-levels of the defensin genes Pdf1.2a/b in mutant plants. The Pdf expression was further enhanced by jasmonic acid treatment or infection with the necrotrophic fungus Alternaria brassicicola. The single mutant hsfB2b and the double mutant hsfB1/B2b were significantly improved in disease resistance after A. brassicicola infection. There was no indication for a direct interaction of Hsf with the promoter of Pdf1.2, which is devoid of perfect HSE consensus Hsf-binding sequences. However, changes in the formation of late HsfA2-dependent HSE binding were detected in hsfB1/B2b plants. This suggests that HsfB1/B2b may interact with class A-Hsf in regulating the shut-off of the heat shock response. The identification of Pdf genes as targets of Hsf-dependent negative regulation is the first evidence for an interconnection of Hsf in the regulation of biotic and abiotic responses.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Defensinas/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas , Proteínas de Choque Térmico/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Sequência de Bases , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...