Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Syst Biol ; 19(4): e11024, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36896621

RESUMO

While several computational methods have been developed to predict the functional relevance of phosphorylation sites, experimental analysis of the interdependency between protein phosphorylation and Protein-Protein Interactions (PPIs) remains challenging. Here, we describe an experimental strategy to establish interdependencies between protein phosphorylation and complex formation. This strategy is based on three main steps: (i) systematically charting the phosphorylation landscape of a target protein; (ii) assigning distinct proteoforms of the target protein to different protein complexes by native complex separation (AP-BNPAGE) and protein correlation profiling; and (iii) analyzing proteoforms and complexes in cells lacking regulators of the target protein. We applied this strategy to YAP1, a transcriptional co-activator for the control of organ size and tissue homeostasis that is highly phosphorylated and among the most connected proteins in human cells. We identified multiple YAP1 phosphosites associated with distinct complexes and inferred how both are controlled by Hippo pathway members. We detected a PTPN14/LATS1/YAP1 complex and suggest a model how PTPN14 inhibits YAP1 via augmenting WW domain-dependent complex formation and phosphorylation by LATS1/2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Humanos , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
2.
Nat Metab ; 2(11): 1212-1222, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33077976

RESUMO

Enhanced growth and proliferation of cancer cells are accompanied by profound changes in cellular metabolism. These metabolic changes are also common under physiological conditions, and include increased glucose fermentation accompanied by elevated cytosolic pH (pHc)1,2. However, how these changes contribute to enhanced cell growth and proliferation is unclear. Here, we show that elevated pHc specifically orchestrates an E2F-dependent transcriptional programme to drive cell proliferation by promoting cyclin D1 expression. pHc-dependent transcription of cyclin D1 requires the transcription factors CREB1, ATF1 and ETS1, and the histone acetyltransferases p300 and CBP. Biochemical characterization revealed that the CREB1-p300/CBP interaction acts as a pH sensor and coincidence detector, integrating different mitotic signals to regulate cyclin D1 transcription. We also show that elevated pHc contributes to increased cyclin D1 expression in malignant pleural mesotheliomas (MPMs), and renders these cells hypersensitive to pharmacological reduction of pHc. Taken together, these data demonstrate that elevated pHc is a critical cellular signal regulating G1 progression, and provide a mechanism linking elevated pHc to oncogenic activation of cyclin D1 in MPMs, and possibly other cyclin D1~dependent tumours. Thus, an increase of pHc may represent a functionally important, early event in the aetiology of cancer that is amenable to therapeutic intervention.


Assuntos
Proliferação de Células , Ciclina D1/biossíntese , Citosol/metabolismo , Linhagem Celular Tumoral , Biologia Computacional , Ciclina D1/genética , Citosol/patologia , Citosol/fisiologia , Fatores de Transcrição E2F/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Concentração de Íons de Hidrogênio , Masculino , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Mesotelioma/patologia , Metabolômica , Mitose/fisiologia , Frações Subcelulares/metabolismo , Fatores de Transcrição
3.
Front Oncol ; 10: 1561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974190

RESUMO

To adjust cell growth and proliferation to changing environmental conditions or developmental requirements, cells have evolved a remarkable network of signaling cascades that integrates cues from cellular metabolism, growth factor availability and a large variety of stresses. In these networks, cellular information flow is mostly mediated by posttranslational modifications, most notably phosphorylation, or signaling molecules such as GTPases. Yet, a large body of evidence also implicates cytosolic pH (pHc) as a highly conserved cellular signal driving cell growth and proliferation, suggesting that pH-dependent protonation of specific proteins also regulates cellular signaling. In mammalian cells, pHc is regulated by growth factor derived signals and responds to metabolic cues in response to glucose stimulation. Importantly, high pHc has also been identified as a hall mark of cancer, but mechanisms of pH regulation in cancer are only poorly understood. Here, we discuss potential mechanisms of pH regulation with emphasis on metabolic signals regulating pHc by Na+/H+-exchangers. We hypothesize that elevated NHE activity and pHc in cancer are a direct consequence of the metabolic adaptations in tumor cells including enhanced aerobic glycolysis, generally referred to as the Warburg effect. This hypothesis not only provides an explanation for the growth advantage conferred by a switch to aerobic glycolysis beyond providing precursors for accumulation of biomass, but also suggests that treatments targeting pH regulation as a potential anti-cancer therapy may effectively target the result of altered tumor cell metabolism.

4.
J Oral Pathol Med ; 46(3): 214-222, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27387227

RESUMO

BACKGROUND: Oral cavity is a doorway for a variety of products containing titanium dioxide (TiO2 ) nanoparticles (NPs) (nano-TiO2 ) such as food additives, oral healthcare products and dental materials. Their potential to penetrate and affect normal human oral mucosa is not yet determined. OBJECTIVES: To evaluate the ability of nano-TiO2 to penetrate the in vitro reconstructed normal human buccal mucosa (RNHBM). METHODS: RNHBM was generated from primary normal human oral keratinocytes and fibroblasts isolated from buccal oral mucosa of healthy patients (n = 6). The reconstructed tissues were exposed after 10 days to clinically relevant concentrations of spherical or spindle rutile nano-TiO2 in suspension for short (20 min) and longer time (24 h). Ultrahigh-resolution imaging (URI) microscopy (CytoViva™ , Auburn, AL, USA) was used to assess the depth of penetration into reconstructed tissues. RESULTS: Ultrahigh-resolution imaging microscopy demonstrated the presence of nano-TiO2 mostly in the epithelium of RNHBM at both 20 min and 24-h exposure, and this was shape and doze dependent at 24 h of exposure. The depth of penetration diminished in time at higher concentrations. The exposed epithelium showed increased desquamation but preserved thickness. CONCLUSION: Nano-TiO2 is able to penetrate RNHBM and to activate its barrier function in a doze- and time-dependent manner.


Assuntos
Mucosa Bucal/metabolismo , Titânio/farmacocinética , Humanos , Técnicas In Vitro , Nanopartículas Metálicas , Microscopia , Tamanho da Partícula , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...