Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445801

RESUMO

The brown alga Pelvetia canaliculata is one of the species successfully adapted to intertidal conditions. Inhabiting the high intertidal zone, Pelvetia spends most of its life exposed to air, where it is subjected to desiccation, light, and temperature stresses. However, the physiological and biochemical mechanisms allowing this alga to tolerate such extreme conditions are still largely unknown. The objective of our study is to compare the biochemical composition of Pelvetia during the different phases of the tidal cycle. To our knowledge, this study is the first attempt to draft a detailed biochemical network underneath the complex physiological processes, conferring the successful survival of this organism in the harsh conditions of the high intertidal zone of the polar seas. We considered the tide-induced changes in relative water content, stress markers, titratable acidity, pigment, and phlorotannin content, as well as the low molecular weight metabolite profiles (GC-MS-based approach) in Pelvetia thalli. Thallus desiccation was not accompanied by considerable increase in reactive oxygen species content. Metabolic adjustment of P. canaliculata to emersion included accumulation of soluble carbohydrates, various phenolic compounds, including intracellular phlorotannins, and fatty acids. Changes in titratable acidity accompanied by the oscillations of citric acid content imply that some processes related to the crassulacean acid metabolism (CAM) may be involved in Pelvetia adaptation to the tidal cycle.


Assuntos
Phaeophyceae , Phaeophyceae/química , Cromatografia Gasosa-Espectrometria de Massas , Espécies Reativas de Oxigênio/metabolismo , Carboidratos
2.
Molecules ; 28(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36985624

RESUMO

Metabolite profiling using gas chromatography coupled to mass spectrometry (GC-MS) is one of the most frequently applied and standardized methods in research projects using metabolomics to analyze complex samples. However, more than 20 years after the introduction of non-targeted approaches using GC-MS, there are still unsolved challenges to accurate quantification in such investigations. One particularly difficult aspect in this respect is the occurrence of sample-dependent matrix effects. In this project, we used model compound mixtures of different compositions to simplify the study of the complex interactions between common constituents of biological samples in more detail and subjected those to a frequently applied derivatization protocol for GC-MS analysis, namely trimethylsilylation. We found matrix effects as signal suppression and enhancement of carbohydrates and organic acids not to exceed a factor of ~2, while amino acids can be more affected. Our results suggest that the main reason for our observations may be an incomplete transfer of carbohydrate and organic acid derivatives during the injection process and compound interaction at the start of the separation process. The observed effects were reduced at higher target compound concentrations and by using a more suitable injection-liner geometry.


Assuntos
Aminoácidos , Metabolômica , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Aminoácidos/química , Carboidratos/química , Compostos de Trimetilsilil/química
3.
Antioxidants (Basel) ; 12(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36978944

RESUMO

Phaeophyceae (brown algae) essentially contribute to biotopes of cold and temperate seas. Their thalli are rich in biologically active natural products, which are strongly and universally dominated with phlorotannins-polyphenols of complex and diverse structure based on multiple differently arranged phloroglucinol units and well known as strong antioxidants with a broad spectrum of biological activities. In the algal cells, phlorotannins can either accumulate in the cytoplasm or can be secreted into the cell wall (CW). The biological activities of extractable intracellular phlorotannins have been comprehensively characterized, whereas the properties of the CW-bound polyphenol fraction are still mostly unknown. Recently, we identified dibenzodioxin bonding as the principal structural feature of the CW-bound phlorotannins in fucoid algae, whereas soluble intracellular phlorotannins rely on aryl and ether bonds. However, profiles of biological activity associated with these structural differences are still unknown. Therefore, to the best of our knowledge, for the first time we address the antioxidant, cytotoxic, neuroprotective, and antibacterial properties of the CW-bound phlorotannin fractions isolated from two representatives of the order Fucales-Fucus vesiculosus and Pelvetia canaliculata. The CW-bound phlorotannins appeared to be softer antioxidants, stronger antibacterial agents and were featured with essentially less cytotoxicity in comparison to the intracellular fraction. However, the neuroprotective effects of both sub-cellular phlorotannin fractions of F. vesiculosus and P. canaliculata were similar. Thus, due to their lower cytotoxicity, CW-bound phlorotannins can be considered as promising antioxidants and neuroprotectors.

4.
Plants (Basel) ; 12(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36840169

RESUMO

Marine seaweeds synthesize a plethora of bioactive metabolites, of which phlorotannins of brown algae currently attract special attention due to their high antibiotic and cytotoxic capacities. Here we measured the minimum inhibitory concentrations (MICs) of several semi-purified phlorotannin preparations of different origins and molecular composition using a set of model unicellular organisms, such as Escherichia coli, Saccharomyces cerevisiae, Chlamydomonas reinhardtii, etc. For the first time, MIC values were evaluated for phlorotannin-enriched extracts of brown algae of the orders Ectocarpales and Desmarestiales. Phlorotannin extracts of Desmarestia aculeata, Fucus vesiculosus, and Ectocarpus siliculosus showed the lowest MIC values against most of the treated organisms (4-25 µg/mL for bacteria and yeast). Analysis of the survival curves of E. coli showed that massive loss of cells started after 3-4 h of exposure. Microalgae were less susceptible to activity of phlorotannin extracts, with the highest MIC values (≥200 µg/mL) measured for Chlorella vulgaris cells. D. aculeata, E. siliculosus, and three fucalean algae accumulate considerable amounts (4-16% of dry weight) of phlorotannins with MIC values similar to those widely used antibiotics. As these species grow abundantly in polar and temperate seas and have considerable biomass, they may be regarded as promising sources of phlorotannins.

5.
Anal Bioanal Chem ; 415(1): 137-155, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36396731

RESUMO

On-site analysis of volatile organic compounds (VOCs) with miniaturized gas chromatography-mass spectrometry (GC-MS) systems is a very rapidly developing field of application. While, on the one hand, major technological advances are improving the availability of these systems on the market, on the other hand, systematic studies to assess the performance of such instruments are still lacking. To fill this gap, we compared three portable GC-MS devices to a state-of-the-art benchtop (stationary) system for analysis of a standard mixture of 18 VOCs. We systematically compared analytical parameters such as the sensitivity and similarity of the signal response pattern and the quality of the obtained mass spectra. We found that the investigated mobile instruments (i) showed different response profiles with a generally lower number of identified analytes. Also, (ii) mass spectral reproducibility (% relative standard deviation (RSD) of the relative abundance of selective fragments) was generally worse in the mobile devices (mean RSD for all targeted fragments ~9.7% vs. ~3.5% in the stationary system). Furthermore, mobile devices (iii) showed a poorer mass spectral similarity to commercial reference library spectra (>20% deviation of fragment ion relative intensity vs. ~10% in the stationary GC-MS), suggesting a less reliable identification of analytes by library search. Indeed, (iv) the performance was better with higher-mass and/or more abundant fragments, which should be considered to improve the results of library searches for substance identification. Finally, (v) the estimation of the signal-to-noise ratio (S/N) in mobile instruments as a measure of sensitivity revealed a significantly lower performance compared to the benchtop lab equipment (with a ratio among medians of ~8 times lower). Overall, our study reveals not only a poor signal-to-noise ratio and poor reproducibility of the data obtained from mobile instruments, but also unfavorable results with respect to a reliable identification of substances when they are applied for complex mixtures of volatiles.


Assuntos
Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Compostos Orgânicos Voláteis/análise , Razão Sinal-Ruído
6.
Primates ; 63(4): 365-376, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35763106

RESUMO

Although primates have long been regarded as microsmatic, recent studies indicate that olfaction is an important sensory mode of primate communication, e.g., in the context of reproduction. However, large gaps remain in our understanding of primate olfactory traits, especially in the great apes. Female chimpanzees (Pan troglodytes) possess an exaggerated sexual swelling, which is an imprecise signal of fertility that is thought to serve to confuse paternity. However, some high-ranking males that copulate most frequently on the days when females are most fertile seem to have more precise information on the timing of ovulation, which suggests the existence of an olfactory fertility trait. In order to examine, and provide evidence for, fertility-related chemical information in female chimpanzees, we used gas chromatography-mass spectrometry to analyze the chemical composition of female body odor collected across the menstrual cycle during various stages of sexual swelling (97 samples of six females). The chemical composition was significantly affected by swelling stage, and eight substances were detected that were strongly related to the latter. The existence of an additional, olfactory, fertility trait may help males to fine-tune their sexual behavior or allow females to strengthen concealment of the exact timing of ovulation, and needs to be further investigated in follow-up studies. The results of our study provide much-needed evidence for the existence of an olfactory cue related to reproduction in chimpanzees, and form a basis for future studies on the interplay between visual and olfactory information on female fertility.


Assuntos
Pan troglodytes , Comportamento Sexual Animal , Animais , Feminino , Fertilidade , Masculino , Ovulação , Reprodução
7.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628643

RESUMO

The naturally occurring dipeptide carnosine (ß-alanyl-L-histidine) specifically attenuates tumor growth. Here, we ask whether other small imidazole-containing compounds also affect the viability of tumor cells without affecting non-malignant cells and whether the formation of histamine is involved. Patient-derived fibroblasts and glioblastoma cells were treated with carnosine, L-alanyl-L-histidine (LA-LH), ß-alanyl-L-alanine, L-histidine, histamine, imidazole, ß-alanine, and L-alanine. Cell viability was assessed by cell-based assays and microscopy. The intracellular release of L-histidine and formation of histamine was investigated by high-performance liquid chromatography coupled to mass spectrometry. Carnosine and LA-LH inhibited tumor cell growth with minor effects on fibroblasts, and L-histidine, histamine, and imidazole affected viability in both cell types. Compounds without the imidazole moiety did not diminish viability. In the presence of LA-LH but not in the presence of carnosine, a significant rise in intracellular amounts of histidine was detected in all cells. The formation of histamine was not detectable in the presence of carnosine, LA-LH, or histidine. In conclusion, the imidazole moiety of carnosine contributes to its anti-neoplastic effect, which is also seen in the presence of histidine and LA-LH. Despite the fact that histamine has a strong effect on cell viability, the formation of histamine is not responsible for the effects on the cell viability of carnosine, LA-LH, and histidine.


Assuntos
Carnosina , Glioblastoma , Alanina , Carnosina/metabolismo , Fibroblastos/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Histamina/metabolismo , Histamina/farmacologia , Histidina/metabolismo , Humanos , Imidazóis/farmacologia , beta-Alanina
8.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884603

RESUMO

The naturally occurring dipeptide carnosine (ß-alanyl-l-histidine) has beneficial effects in different diseases. It is also frequently used as a food supplement to improve exercise performance and because of its anti-aging effects. Nevertheless, after oral ingestion, the dipeptide is not detectable in human serum because of rapid degradation by serum carnosinase. At the same time, intact carnosine is excreted in urine up to five hours after intake. Therefore, an unknown compartment protecting the dipeptide from degradation has long been hypothesized. Considering that erythrocytes may constitute this compartment, we investigated the uptake and intracellular amounts of carnosine in human erythrocytes cultivated in the presence of the dipeptide and human serum using liquid chromatography-mass spectrometry. In addition, we studied carnosine's effect on ATP production in red blood cells and on their response to oxidative stress. Our experiments revealed uptake of carnosine into erythrocytes and protection from carnosinase degradation. In addition, no negative effect on ATP production or defense against oxidative stress was observed. In conclusion, our results for the first time demonstrate that erythrocytes can take up carnosine, and, most importantly, thereby prevent its degradation by human serum carnosinase.


Assuntos
Trifosfato de Adenosina/metabolismo , Carnosina/metabolismo , Dipeptidases/metabolismo , Eritrócitos/metabolismo , Estresse Oxidativo , Soro/enzimologia , Carnosina/química , Eritrócitos/patologia , Humanos
10.
J Chromatogr A ; 1645: 462095, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-33857675

RESUMO

Liquid chromatography coupled to a triple quadrupole and, alternatively, to an ultrahigh-resolution quadrupole time-of-flight (UHR-QqTOF) mass spectrometers was used to collect qualitative and quantitative information from incubations of the anti-hepatitis C drug simeprevir with human and rat liver microsomes, respectively, supplemented with NADPH and glutathione. For this, different chromatographic methods using two different chromatographic columns, Kinetex® 2.6 µm C18 (50 × 3 mm) and Atlantis T3 (100 Å, 3 µm, 4.6 mm × 150 mm), have been employed. For determination and structural characterization of the reactive metabolites, we used information obtained from high-resolution mass spectrometry, namely accurate mass data to calculate the elemental composition, accurate MS/MS fragmentation patterns for confirmation of structural proposals, and the high mass spectral resolution to eliminate false-positive peaks. In this study, the use of high-resolution mass spectrometry (HR-MS) enabled the identification of 19 simeprevir metabolites generated by O- respectively N-demethylation, oxidation, dehydrogenation, hydrolysis, and formation of glutathione conjugates. The in silico study provides insights into the sites of simeprevir most amenable to reactions involving cytochrome P450. The developed methods have been successfully applied to analyze simeprevir and its metabolites simultaneously; based on this data, potential metabolic pathways of simeprevir are discussed. In general, the obtained results demonstrate that simeprevir is susceptible to form reactive simeprevir-glutathione adducts and cyclopropansulfonamide, which may explain the implication of simeprevir in idiosyncratic adverse drug reactions (IADRs) or hepatotoxicity.


Assuntos
Cromatografia Líquida/métodos , Glutationa/metabolismo , Microssomos Hepáticos/metabolismo , Simeprevir , Espectrometria de Massas em Tandem/métodos , Animais , Glutationa/análise , Humanos , Ratos , Simeprevir/análise , Simeprevir/química , Simeprevir/metabolismo
11.
Molecules ; 26(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923301

RESUMO

Though numerous valuable compounds from red algae already experience high demand in medicine, nutrition, and different branches of industry, these organisms are still recognized as an underexploited resource. This study provides a comprehensive characterization of the chemical composition of 15 Arctic red algal species from the perspective of their practical relevance in medicine and the food industry. We show that several virtually unstudied species may be regarded as promising sources of different valuable metabolites and minerals. Thus, several filamentous ceramialean algae (Ceramium virgatum, Polysiphonia stricta, Savoiea arctica) had total protein content of 20-32% of dry weight, which is comparable to or higher than that of already commercially exploited species (Palmaria palmata, Porphyra sp.). Moreover, ceramialean algae contained high amounts of pigments, macronutrients, and ascorbic acid. Euthora cristata (Gigartinales) accumulated free essential amino acids, taurine, pantothenic acid, and floridoside. Thalli of P. palmata and C. virgatum contained the highest amounts of the nonproteinogenic amino acid ß-alanine (9.1 and 3.2 µM g-1 DW, respectively). Several red algae tend to accumulate heavy metals; although this may limit their application in the food industry, it makes them promising candidates for phytoremediation or the use as bioindicators.


Assuntos
Indústria Alimentícia , Medicina , Minerais/química , Rodófitas/química , Regiões Árticas , Biodegradação Ambiental/efeitos dos fármacos , Humanos , Minerais/isolamento & purificação , Minerais/farmacologia , Oceanos e Mares
12.
Sci Rep ; 11(1): 2948, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536450

RESUMO

Mass spectrometry coupled to low-temperature plasma ionization (LTPI) allows for immediate and easy analysis of compounds from the surface of a sample at ambient conditions. The efficiency of this process, however, strongly depends on the successful desorption of the analyte from the surface to the gas phase. Whilst conventional sample heating can improve analyte desorption, heating is not desirable with respect to the stability of thermally labile analytes. In this study using aromatic amines as model compounds, we demonstrate that (1) surface acoustic wave nebulization (SAWN) can significantly improve compound desorption for LTPI without heating the sample. Furthermore, (2) SAWN-assisted LTPI shows a response enhancement up to a factor of 8 for polar compounds such as aminophenols and phenylenediamines suggesting a paradigm shift in the ionization mechanism. Additional assets of the new technique demonstrated here are (3) a reduced analyte selectivity (the interquartile range of the response decreased by a factor of 7)-a significant benefit in non-targeted analysis of complex samples-and (4) the possibility for automated online monitoring using an autosampler. Finally, (5) the small size of the microfluidic SAWN-chip enables the implementation of the method into miniaturized, mobile LTPI probes.

13.
Food Chem ; 347: 128951, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493836

RESUMO

Glycation is referred to as the interaction of protein amino and guanidino groups with reducing sugars and carbonyl products of their degradation. Resulting advanced glycation end-products (AGEs) contribute to pathogenesis of diabetes mellitus and neurodegenerative disorders. Upon their intestinal absorption, dietary sugars and α-dicarbonyl compounds interact with blood proteins yielding AGEs. Although the differences in glycation potential of monosaccharides are well characterized, the underlying mechanisms are poorly understood. To address this question, d-glucose, d-fructose and l-ascorbic acid were incubated with human serum albumin (HSA). The sugars and α-dicarbonyl intermediates of their degradation were analyzed in parallel to protein glycation patterns (exemplified with hydroimidazolone modifications of arginine residues and products of their hydrolysis) by bottom-up proteomics and computational chemistry. Glycation of HSA with sugars revealed 9 glyoxal- and 14 methylglyoxal-derived modification sites. Their dynamics was sugar-specific and depended on concentrations of α-dicarbonyls, their formation kinetics, and presence of stabilizing residues in close proximity to the glycation sites.


Assuntos
Açúcares da Dieta/metabolismo , Albumina Sérica Humana/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Humanos , Hidrólise , Cinética
15.
Planta Med ; 86(17): 1269-1277, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32898874

RESUMO

The leaves of Piliostigma thonningii are used in traditional medicine in Benin to treat inflammatory skin diseases and infections. So far, pharmacological studies of the anti-inflammatory and anti-infective effects of phytochemically characterized extracts of P. thonningii have been very limited. Therefore, we investigated the in vitro anti-inflammatory and antimicrobial effect of P. thonningii leaf extracts and analyzed the phytochemical composition of extracts of different polarities (water, 50% ethanol, and n-hexane). Quercetin-3-O-rhamnoside was confirmed as the main flavonoid in the polar extracts. GC-MS analysis identified 20 constituents of the aqueous extract and 28 lipophilic compounds of the n-hexane extract by comparison with authentic standards and spectral library data. The aqueous P. thonningii leaf extract inhibited the IL-8 and IL-6 secretion in TNF-α-stimulated HaCaT cells in a concentration-dependent manner with IC50 values of 74 µg/mL for IL-8 and 89 µg/mL for IL-6. However, an inhibitory effect of the identified quercetin-3-O-rhamnoside and its aglycone, quercetin, on the release of IL-8 and IL-6 could not be demonstrated. In the antimicrobial screening, inhibition zones for a 50% EtOH leaf extract of P. thonningii were found for Staphylococcus epidermidis, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. For none of the microbial strains, however, the MIC was below 500 µg/mL, so that the antibacterial activity must be classified as low. As a result, our investigations primarily support the ethnomedical use of P. thonningii leaf extracts in topical inflammatory conditions. Further studies are required to identify the compounds responsible for the in vitro anti-inflammatory effects.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Benin , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Folhas de Planta
16.
Metabolites ; 10(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933101

RESUMO

Accumulation of biologically active metabolites is a specific feature of plant biochemistry, directing the use of plants in numerous applications in the pharmaceutical and food industries. Among these substances, the plethora of phenolic compounds has attracted particular interest among researchers. Here, we report on new findings in phlorotannin research, a large group of multifunctional phenolic substances, produced in brown algae. Comprehensive LC-MS profiling of three algal species allowed us to depict the complex pattern of this structurally diverse compound group across different tissues and subcellular compartments. We compiled more than 30 different phlorotannin series in one sample and used accurate mass spectrometry to assign tentative structures to the observed ions based on the confirmed sum formulas. From that, we found that acetylation, hydroxylation, and oxidation are likely to be the most common in vivo modifications to phlorotannins. Using an alternative data mining strategy to cope with extensive coelution and structural isomers, we quantitatively compared the intensity of different phlorotannin series in species, tissues, and subcellular compartments to learn more about their physiological functions. The structure and intra-thallus profiles of cell wall-bound phlorotannins were studied here for the first time. We suggest that one of the major dibenzodioxin-type phlorotannin series may exclusively target integration into the cell wall of fucoid algae.

17.
Methods Protoc ; 3(2)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375407

RESUMO

Fatty acids (FAs) represent an important class of metabolites, impacting on membrane building blocks and signaling compounds in cellular regulatory networks. In nature, prokaryotes are characterized with the most impressing FA structural diversity and the highest relative content of free fatty acids (FFAs). In this context, nitrogen-fixing bacteria (order Rhizobiales), the symbionts of legumes, are particularly interesting. Indeed, the FA profiles influence the structure of rhizobial nodulation factors, required for successful infection of plant root. Although FA patterns can be assessed by gas chromatography-(GC-) and liquid chromatography-mass spectrometry (LC-MS), sample preparation for these methods is time-consuming and quantification suffers from compromised sensitivity, low stability of derivatives and artifacts. In contrast, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) represents an excellent platform for high-efficient metabolite fingerprinting, also applicable to FFAs. Therefore, here we propose a simple and straightforward protocol for high-throughput relative quantification of FFAs in rhizobia by combination of Langmuir technology and MALDI-TOF-MS featuring a high sensitivity, accuracy and precision of quantification. We describe a step-by-step procedure comprising rhizobia culturing, pre-cleaning, extraction, sample preparation, mass spectrometric analysis, data processing and post-processing. As a case study, a comparison of the FFA metabolomes of two rhizobia species-Rhizobium leguminosarum and Sinorhizobium meliloti, demonstrates the analytical potential of the protocol.

18.
Molecules ; 25(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936854

RESUMO

Leaves from Combretum collinum Fresen (Combretaceae) are commonly used for the treatment of inflammatory conditions, wound healing and bacterial infections in traditional West African medicine. This research focuses on the characterization of the phenolic profile and lipophilic compounds of leaves extracts of C. collinum. Studies of the in vitro anti-inflammatory activity were performed in TNFα stimulated HaCaT cells and antibacterial activity was evaluated with agar well diffusion and microdilution assays. Antioxidant activity was determined by DPPH and ABTS assays and compared to standards. The phytochemical studies confirmed myricetin-3-O-rhamnoside and myricetin-3-O-glucoside as major components of the leaves extracts, each contributing significantly to the antioxidant activity of the hydrophilic extracts. GC-MS analysis identified 19 substances that were confirmed by comparison with spectral library data and authentic standards. Combretum collinum aqueous leaves extract decreased pro-inflammatory mediators in TNFα stimulated HaCaT cells. Further investigations showed that myricetin-3-O-rhamnoside has an anti-inflammatory effect on IL-8 secretion. In the antimicrobial screening, the largest inhibition zones were found against S. epidermidis, MRSA and S. aureus. MIC values resulted in 275.0 µg/mL for S. epidermidis and 385.5 µg/mL for MRSA. The in vitro anti-inflammatory, antibacterial and antioxidant activity supports topical use of C. collinum leaves extracts in traditional West African medicine.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Combretum/química , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Folhas de Planta/química , Staphylococcus epidermidis/crescimento & desenvolvimento , Anti-Infecciosos/química , Anti-Inflamatórios/química , Antioxidantes/química , Benin , Linhagem Celular , Humanos , Extratos Vegetais/química
19.
J Chromatogr A ; 1617: 460822, 2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31928772

RESUMO

Fast active sampling of volatile organic compounds (VOCs) under field conditions still is a great challenge especially when the exposure time to the source of emissions is a restricting factor. Hence, to identify ideal conditions for such applications, we systematically compared fast active sampling of VOCs collected on two common adsorbents under two regimes: first, very low gas volumes (from 300 mL) sampled at nominal flow rate and, second, sampling at the maximal applicable flow rate (0.5 L/min) before loss of sorbent material was experienced. For XAD-2 and Tenax TA, efficient sorbents for on-site VOC-sampling followed by thermal desorption GC-MS, significant differences in the signal response of volatile compounds were related not only to the varied experimental factors alone, but also to their interactions and to compound volatility. In the first regime, volatiles (∼0.004-3.13 mM) from Tenax TA gave the highest signal response only above 800 mL sampled gas volume while at low concentrations (∼0.004-0.12 mM), satisfactory recovery from XAD-2 required longer analyte-sorbent interaction. For the second regime, the relative recovery was severely impaired down to 73 ±â€¯23%, n = 56 for Tenax TA and 72 ±â€¯17%, n = 56 for XAD-2 at intermediate concentration, and 79 ±â€¯11%, n = 84 for Tenax TA at high concentration compared to the relative recovery at standard flow rate. Neither Tenax TA nor XAD-2 provided a 100% total recovery (calculated using breakthrough values) for any of the evaluated compounds. Finally, two-way and three-way interactions identified in a multi-variable model, explained not only the dependence of the signal response on different experimental variables, but also their complex interplay affecting the recovery of the VOCs. In conclusion, we show for the first time that XAD-2, a material only recently introduced for the adsorption of volatiles from the gas phase, competes well with the standard material Tenax TA under conditions of fast sampling. Due to the similar absolute recovery with Tenax TA even at low concentration and with regard to the better detection limits, we consider XAD-2 the better choice for fast sampling of VOCs, particularly with low sample volumes at regular flow. For fast sampling with high flow rate, however, both sorbents might be selected only if the corresponding recovery loss can be accepted for the study.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Adsorção , Polímeros , Temperatura
20.
Cell Prolif ; 53(2): e12702, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31628715

RESUMO

OBJECTIVES: Carnosine (ß-alanyl-l-histidine) is a naturally occurring dipeptide that selectively inhibits cancer cell growth, possibly by influencing glucose metabolism. As its precise mode of action and its primary targets are unknown, we analysed carnosine's effect on metabolites and pathways in glioblastoma cells. MATERIALS AND METHODS: Glioblastoma cells, U87, T98G and LN229, were treated with carnosine, and metabolites were analysed by gas chromatography coupled with mass spectrometry. Furthermore, mitochondrial ATP production was determined by extracellular flux analysis and reaction products of carnosine were investigated using mass spectrometry. RESULTS: Carnosine decreased the intracellular abundance of several metabolites indicating a reduced activity of the pentose phosphate pathway, the malate-aspartate shuttle and the glycerol phosphate shuttle. Mitochondrial respiration was reduced in U87 and T98G but not in LN229 cells, independent of whether glucose or pyruvate was used as substrate. Finally, we demonstrate non-enzymatic reaction of carnosine with dihydroxyacetone phosphate and glyceraldehyde-3-phosphate. However, glycolytic flux from glucose to l-lactate appeared not to be affected by the reaction of carnosine with the metabolites. CONCLUSIONS: Carnosine reacts non-enzymatically with glycolytic intermediates reducing the activity of the pentose phosphate pathway which is required for cell proliferation. Although the activity of the malate-aspartate and the glycerol phosphate shuttle appear to be affected, reduced mitochondrial ATP production under the influence of the dipeptide is cell-specific and appears to be independent of the effect on the shuttles.


Assuntos
Carnosina/metabolismo , Gliceraldeído 3-Fosfato/metabolismo , Via de Pentose Fosfato/fisiologia , Trifosfato de Adenosina/metabolismo , Ácido Aspártico/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Glucose/metabolismo , Gliceraldeído/metabolismo , Glicólise/fisiologia , Humanos , Malatos/metabolismo , Mitocôndrias/metabolismo , Fosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...