Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 77: 672-679, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28532078

RESUMO

Bacterial cellulose membrane is a biomaterial with high value in the biomedical field. Many groups have been making efforts to promote chemical modifications of its structure and, consequently, add new characteristics. Recently, our group has developed a methodology to insert monoester succinic acid in bacterial cellulose membrane without disrupting the microfibril network and bind a protein on it. Considering the role of carbohydrates in the molecular recognition process in biological events, we continued these studies by inserting covalently multiples copies of aryl monosaccharide to bacterial cellulose succinylated and to study the in vitro tissue compatibility using fibroblasts. The mix of synthetical chemistry and material modification was performed to prepare aminoaryl mannoside and conjugate it, via amide bond using ultrasonic irradiation, to succinic group of bacterial cellulose. This material was characterized chemically (IR, UV-vis, 13C NMR CP-MAS) and physically (TGA and AFM). Mannosylated cellulose showed good in vitro compatibility with fibroblasts demonstrating its potential in the tissue engineering field which could provide a tissue compatible scaffold.


Assuntos
Fibroblastos , Materiais Biocompatíveis , Celulose , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...