Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 9(10): e1003705, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130497

RESUMO

Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis.


Assuntos
Adesinas Bacterianas/imunologia , Antígenos de Bactérias/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Feminino , Glicosilação , Humanos , Masculino , Manose/genética , Manose/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/genética , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Linfócitos T/metabolismo , Tuberculose/genética , Tuberculose/imunologia , Tuberculose/metabolismo , Vacinas contra a Tuberculose/genética
2.
Immunol Cell Biol ; 85(2): 160-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17199112

RESUMO

The principal defense of the human host against a Mycobacterium tuberculosis infection is the formation of granulomas, organized collections of activated macrophages, including epithelioid and multinucleated giant cells, surrounded by lymphocytes. This granuloma can sequester and contain the bacteria preventing active disease, and if the granuloma is maintained, these bacteria may remain latent for a person's lifetime. Secretion of a variety of chemoattractant cytokines following phagocytosis of the bacilli by the macrophage is critical not only to the formation of the granuloma but also to its maintenance. To investigate this process of early granuloma formation, we developed an in vitro model composed entirely of human cells. Combining blood lymphocytes and autologous macrophages from healthy purified protein derivative skin test-negative individuals and mycobacteria resulted in the formation of small, rounded aggregate structures. Microscopic examination found macrophage-specific CD68(+) epithelioid macrophages and small round CD3(+) lymphocytes that in complex resembled small granulomas seen in clinical pathology specimens. Acid-fast staining bacteria were observed between and possibly within the cells composing the granulomas. Supernatants from the infected cells collected at 24 and 48 h and 5 and 9 days after infection were analyzed by a multiplexed cytokine bead-based assay using the Luminex 100 and were found to contain interleukin (IL)-6, IL-8, interferon-gamma and tumor necrosis factor-alpha, cytokines known to be involved in human granuloma formation, in quantities from two-fold to 7000-fold higher than supernatants from uninfected control cells. In addition, chemotaxis assays demonstrated that the same supernatants attracted significantly more human peripheral blood mononuclear cells than those of uninfected cells (P<0.001). This model may provide insight into the earliest stages of granuloma formation in those newly infected.


Assuntos
Granuloma/fisiopatologia , Leucócitos/metabolismo , Mycobacterium tuberculosis , Tuberculose/imunologia , Tuberculose/patologia , Adulto , Células Cultivadas , Quimiotaxia de Leucócito , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Citocinas/fisiologia , Humanos , Leucócitos/efeitos dos fármacos , Pessoa de Meia-Idade , Modelos Biológicos
3.
Microbiology (Reading) ; 152(Pt 6): 1591-1600, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16735723

RESUMO

Secondary sigma factors in bacteria direct transcription of defence regulons in response to specific stresses. To identify which sigma factors in the human respiratory pathogen Mycobacterium tuberculosis are important for adaptive survival in vivo, defined null mutations were created in individual sigma factor genes. In this study, in vitro growth virulence and guinea pig pathology of M. tuberculosis mutants lacking functional sigma factors (SigC, SigF, or SigM) were compared to the parent strain, H37Rv. None of the mutant strains exhibited a growth deficiency in Middlebrook 7H9 broth, nor were any impaired for intracellular replication in the human monocytic macrophage cell-line THP-1. Following low-dose aerosol infection of guinea pigs, however, differences could be detected. While a SigM mutant resulted in lung and spleen granulomas of comparable composition to those found in H37Rv-infected animals, a SigF mutant was partially attenuated, exhibiting necrotic spleen granulomas and ill-defined lung granulomas. SigC mutants exhibited attenuation in the lung and spleen; notably, necrotic granulomas were absent. These data suggest that while SigF may be important for survival in the lung, SigC is likely a key regulator of pathogenesis and adaptive survival in the lung and spleen. Understanding how SigC mediates survival in the host should prove useful in the development of anti-tuberculosis therapies.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mutação , Mycobacterium tuberculosis/patogenicidade , Fator sigma/metabolismo , Tuberculose Pulmonar/microbiologia , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Feminino , Cobaias , Humanos , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/microbiologia , Monócitos/microbiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Fator sigma/genética , Tuberculose Pulmonar/patologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...