Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 565: 225-37, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19551365

RESUMO

Inhibitors of kinase activities can be mechanistically diverse, genomically selective, and pathway sensitive. This potential has made these biological targets the focus of a number of drug discovery and development programs in the pharmaceutical industry. To this end, the high-throughput screening of kinase targets against diverse chemical libraries or focused compound collections is at the forefront of the drug discovery process. Thus, the platform technology used to screen such libraries must be flexible and produce reliable and comparable data. The Caliper HTS microfluidic platform provides a direct determination of a peptidic substrate and phosphorylated product through the electrophoretic separation of the two species. The resulting data are reliable and comparable among screens and cover a broad range of biological targets, provided there is a definable peptide substrate that permits separation. Here we present a method for the high-throughput screening of the cyclic AMP-dependent protein kinase (PKA) as an example of the simplicity of this microfluidic platform.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Microfluídica/métodos , Animais , Humanos , Reprodutibilidade dos Testes
2.
J Biomol Screen ; 12(7): 972-82, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17942790

RESUMO

Sequence-based phylogenies (SBP) are well-established tools for describing relationships between proteins. They have been used extensively to predict the behavior and sensitivity toward inhibitors of enzymes within a family. The utility of this approach diminishes when comparing proteins with little sequence homology. Even within an enzyme family, SBPs must be complemented by an orthogonal method that is independent of sequence to better predict enzymatic behavior. A chemogenomic approach is demonstrated here that uses the inhibition profile of a 130,000 diverse molecule library to uncover relationships within a set of enzymes. The profile is used to construct a semimetric additive distance matrix. This matrix, in turn, defines a sequence-independent phylogeny (SIP). The method was applied to 97 enzymes (kinases, proteases, and phosphatases). SIP does not use structural information from the molecules used for establishing the profile, thus providing a more heuristic method than the current approaches, which require knowledge of the specific inhibitor's structure. Within enzyme families, SIP shows a good overall correlation with SBP. More interestingly, SIP uncovers distances within families that are not recognizable by sequence-based methods. In addition, SIP allows the determination of distance between enzymes with no sequence homology, thus uncovering novel relationships not predicted by SBP. This chemogenomic approach, used in conjunction with SBP, should prove to be a powerful tool for choosing target combinations for drug discovery programs as well as for guiding the selection of profiling and liability targets.


Assuntos
Enzimas/química , Enzimas/genética , Genômica , Proteoma , Inibidores Enzimáticos/farmacologia , Humanos , Filogenia
3.
Curr Top Med Chem ; 5(10): 941-51, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16178739

RESUMO

The p38 MAP kinases are a family of serine/threonine protein kinases that play a key role in cellular pathways leading to pro-inflammatory responses. We have developed and implemented a method for rapidly identifying and optimizing potent and selective p38alpha inhibitors, which is amenable to other targets and target classes. A diverse library of druggable, purified and quantitated molecules was assembled and standardized enzymatic assays were performed in a microfluidic format that provided very accurate and precise inhibition data allowing for development of SAR directly from the primary HTS. All compounds were screened against a collection of more than 60 enzymes (kinases, proteases and phosphatases), allowing for removal of promiscuous and non-selective inhibitors very early in the discovery process. Follow-up enzymological studies included measurement of concentration of compound in buffer, yielding accurate determination of K(i) and IC50 values, as well as mechanism of action. In addition, active compounds were screened against less desirable properties such as inhibition of the enzyme activity by aggregation, irreversible binding, and time-dependence. Screening of an 88,634-compound library through the above-described process led to the rapid identification of multiple scaffolds (>5 active compounds per scaffold) of potential drug leads for p38alpha that are highly selective against all other enzymes tested, including the three other p38 isoforms. Potency and selectivity data allowed prioritization of the identified scaffolds for optimization. Herein we present results around our 3-thio-1,2,4-triazole lead series of p38- selective inhibitors, including identification, SAR, synthesis, selectivity profile, enzymatic and cellular data in their progression towards drug candidates.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Triazóis/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Modelos Biológicos , Especificidade por Substrato , Tecnologia Farmacêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...