Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37376379

RESUMO

Tribo-mechanical experiments were performed on Glass Fiber Reinforced Polymer (GRFP) composites against different engineering materials, and the tribological behavior of these materials under dry conditions was investigated. The novelty of this study consists of the investigation of the tribomechanical properties of a customized GFRP/epoxy composite, different from those identified in the literature. The investigated material in the work is composed of 270 g/m2 fiberglass twill fabric/epoxy matrix. It was manufactured by the vacuum bag method and autoclave curing procedure. The goal was to define the tribo-mechanical characteristics of a 68.5% weight fraction ratio (wf) of GFRP composites in relation to the different categories of plastic materials, alloyed steel, and technical ceramics. The properties of the material, including ultimate tensile strength, Young's modulus of elasticity, elastic strain, and impact strength of the GFPR, were determined through standard tests. The friction coefficients were obtained using a modified pin-on-disc tribometer using sliding speeds ranging from 0.1 to 0.36 m s-1, load 20 N, and different counter face balls from Polytetrafluoroethylene (PTFE), Polyamide (Torlon), 52,100 Chrome Alloy Steel, 440 Stainless Steel, and Ceramic Al2O3, with 12.7 mm in diameter, in dry conditions. These are commonly used as ball and roller bearings in industry and for a variety of automotive applications. To evaluate the wear mechanisms, the worm surfaces were examined and investigated by a Nano Focus-Optical 3D Microscopy, which uses cutting-edge µsurf technology to provide highly accurate 3D measurements of surfaces. The obtained results constitute an important database for the tribo-mechanical behavior of this engineering GFRP composite material.

2.
Polymers (Basel) ; 16(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38201727

RESUMO

Fibers play an important role when studying the tribological behavior of reinforced friction composites. The purpose of the current research is to develop a glass fiber reinforced polymer (GFRP) recipe with improved tribological properties as well as to find the composites with the optimal tribological behavior. A ball-on-disc tribometer was used to perform dry sliding friction testing, the obtained results were then analyzed with the ELECTRE (ELimination Et Choix Traduisant la REalite-elimination and choice translating the reality) method based on a utility matrix having process parameters the applied load, sliding velocity, and weight percentage of the fiber content. The ELECTRE method was chosen to find the optimal tribological parameters, with respect to more performance criteria, because it is one of the best multiple criteria decision-making methods. The optimal combination of parameters for the multi-response characteristics of the investigated friction composite was at an applied load of 10 N, a sliding velocity of 0.1 ms-1 and a 54% weight fiber content. The results showed that the addition of glass fiber (GF) content did not considerably improve the tribological behavior of the friction composites. In addition, from the nano focus-optical 3D scanning electron microscopy, images of the friction, tested friction and wear composites, plate formation, fiber-matrix delamination, fiber pull-out, and matrix cracking and damage, various wear mechanisms were identified.

3.
Polymers (Basel) ; 14(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145857

RESUMO

Friction and wear experiments were performed on carbon fiber-reinforced polymer (CFRP) composites, and the tribological behavior of these materials under boundary lubrication (based on the 5100 4T 10 W-30 engine oil with TiO2 Degussa P25 nanoparticles) was investigated. Experiments were carried out in two directions: one at a different normal load from 6 to 16 N and one at a low sliding speed of 110 mm/min under boundary lubrication conditions. The obtained results reveal the stick-slip effect and the static and dynamic coefficient of friction decreased slightly with increasing normal applied load on the carbon fiber reinforced polymer composite pairs. The second direction highlights through experimental tests on the pin on disc tribometer that the friction coefficient increases with the increase in normal load (20-80 N) and sliding velocity (0.4-2.4 m/s). On the other hand, it is found that the friction coefficient is slightly lower than in the stick-slip phase. During the running-in process, the friction coefficient of the CFRP pair increases steadily as the rubbing time increases, and after a certain rubbing period, it remains constant regardless of the material of the counter face. The obtained results show that for the observed interval, the influence of normal load and sliding velocity have relatively small fraction coefficients and low wear depths. A 3D analysis of the profile demonstrated the texture of wear marks and tracks of these engineering composite materials. Furthermore, the height variations of wear marks and the morphologies of the worn surfaces of specimens under boundary lubrication conditions were analyzed.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35409770

RESUMO

This paper presents research conducted in the direction of analyzing the efficiency of filters used for drinking water intended for domestic consumption, with effects on the water quality gained from the public distribution network. A basic method that uses accessible techniques, such as optical microscopy and tests that involve the use of existing products on the consumer market, was developed regarding the filtration capacities of the main filters existing on the market-a method that has advantages, such as speed and ease of application, a unitary character in obtaining samples, low costs, and high efficiency. The technique approached is that of microscopy, and the samples used were taken from the laboratory tests made on the mentioned filters, using a specific experimental stand designed to support laboratory tests by using chosen filter cartridges. The research results obtained were analyzed to make a classification from the perspective of filtration efficiency, in terms of using statistical analysis tools (mathematical models and methods processed in MATLAB software). Moreover, by using a certain type of application based on specific mathematical algorithms, which takes into account some influential factors with a decisive role on household consumers, it was aimed to identify the optimal filter element for acquisition and use in its own regime. The aim of the study was to identify the optimal filter cartridge from the perspective of quality-price ratio.


Assuntos
Água Potável , Purificação da Água , Algoritmos , Filtração/métodos , Purificação da Água/métodos , Qualidade da Água
5.
Polymers (Basel) ; 14(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35267832

RESUMO

This study presents the effect of temperature on the mechanical and tribological properties of SU-8 polymer. The temperature of investigated samples increasing during testing and the variation of mechanical and tribological properties were monitored. The samples for tests were SU-8 hard baked at different temperatures. The hard bake temperature changes the mechanical and tribological properties of polymers. The aim of this research work is the reliability design improvement of SU-8 microstructures from electro-thermally actuated devices where a thermal gradient produces the softening and modification of SU-8 behavior. As a function of the hard baked temperature, different mechanical and tribological properties were experimentally determined using the atomic force microscopy (AFM) technique. The mechanical properties of interest are the modulus of elasticity and hardness. The investigated tribological properties involve the adhesion and friction forces. The modulus of elasticity and hardness decrease if the operating temperature increases based on the thermal relaxation of material and their viscoelastic behavior. The adhesion force between AFM tip and investigated samples increases if the operating temperature increases, respectively. The same evolution was experimentally observed in the case of friction force. Moreover, for the same testing temperature, the modulus of elasticity and hardness increase, and the adhesion and friction forces decrease if the SU-8 is hard baked at high temperature.

6.
Sci Rep ; 12(1): 5201, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338221

RESUMO

Nano-lubricants offer improved tribological properties in many applications, such as machines and engines. The presence of nanoparticles in the lubricating oil affects its wear, friction, thermal, chemical and physical properties in many ways. Titanium dioxide (TiO2) is a promising lubricant additive for enhanced engine efficiency. This article reports the effect of 10 W-30 pure base engine oil suspended TiO2 nanoparticles. Four different volume concentrations (0.01%, 0.025%, 0.050% and 0.075%) of TiO2 nanoparticles in the base lubricating oil are used for the analysis. The tribological tests were performed at ambient temperature as well as at 75 °C using a four ball tribometer. Scanning electron microscope (SEM) and Alicona Inginite Focus G5 microscope were used to analyze the worn surface. The results show that the surface-modified TiO2 nanoparticles can remarkably improve the load-carrying capacity, the friction reducing, and anti-wear abilities of the additive oil. The diameter of the wear trace and the coefficient of friction are the tribological properties analyzed for the nano-lubricant prepared at different volume concentration (VC). It was found that the diameter of the wear scar and the coefficient of friction increase with increasing VC of TiO2 nanoparticles in the lubricating oil. The main objective of the paper is to present the recent progress and, consequently, to develop a comprehensive understanding of the tribological behavior of engine oil mixed with TiO2 nanoparticles.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34207608

RESUMO

The transition to a circular economy with an emphasis on eco-innovation is just beginning both in Europe and in Romania, as a member country of the European Union. The whole economic system in which people operate must be circular, which means that it must eliminate conflicting aspects related to regulation, collaboration, governance, supply chain dynamics, and data transparency. However, the barriers to the transition to a circular economy are substantial, and it is up to states to work together to find innovative solutions to society's problems. This article focuses on aspects related to eco-innovation in the field of drinking water quality in all administrative regions of Romania. In this regard, a study was undertaken, and the main objective pursued in was to identify and highlight the degree of eco-innovation of drinking water suppliers in seven underdeveloped regions of Romania. Starting from an analysis of the water management framework through the OECD Principles on Water Governance, it was possible to develop a study on drinking water supply companies in Romania. This study was performed based on specific indicators grouped by categories, and it aimed in two directions: on the one hand, the identification of drinking water distributors with a high degree of eco-innovation, which leads to quality certification of the drinking water supplied and which has the impact of encouraging household consumers to mainly use this type of supplied water to the detriment of PET bottled water (which has well-known major disadvantages in relation to environmental pollution and user health); on the other hand, the identification of drinking water supply companies with a low degree of eco-innovation, which is proof of the need for mandatory measures to improve drinking water quality, measures that can be taken at the supplier level but especially with support from the administrative and political environment.


Assuntos
Água Potável , Europa (Continente) , Humanos , Romênia , Qualidade da Água , Abastecimento de Água
8.
Micromachines (Basel) ; 13(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35056188

RESUMO

Nanotribological studies of thin films are needed to develop a fundamental understanding of the phenomena that occur to the interface surfaces that come in contact at the micro and nanoscale and to study the interfacial phenomena that occur in microelectromechanical systems (MEMS/NEMS) and other applications. Atomic force microscopy (AFM) has been shown to be an instrument capable of investigating the nanomechanical behavior of many surfaces, including thin films. The measurements of tribo-mechanical behavior for MEMS materials are essential when it comes to designing and evaluating MEMS devices. A great deal of research has been conducted to evaluate the efficiency and reliability of different measurements methods for mechanical properties of MEMS material; nevertheless, the technologies regarding manufacturing and testing MEMS materials are not fully developed. The objectivesof this study are to focus on the review of the mechanical and tribological advantages of thin film and to highlight the experimental results of some thin films to obtain quantitative analyses, the elastic/plastic response and the nanotribological behavior. The slight fluctuation of the results for common thin-film materials is most likely due to the lack of international standardization for MEMS materials and for the methods used to measure their properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...