Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Indoor Air ; 32(6): e13039, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35762234

RESUMO

The IPCC 2021 report predicts rising global temperatures and more frequent extreme weather events in the future, which will have different effects on the regional climate and concentrations of ambient air pollutants. Consequently, changes in heat and mass transfer between the inside and outside of buildings will also have an increasing impact on indoor air quality. It is therefore surprising that indoor spaces and occupant well-being still play a subordinate role in the studies of climate change. To increase awareness for this topic, the Indoor Air Quality Climate Change (IAQCC) model system was developed, which allows short and long-term predictions of the indoor climate with respect to outdoor conditions. The IAQCC is a holistic model that combines different scenarios in the form of submodels: building physics, indoor emissions, chemical-physical reaction and transformation, mold growth, and indoor exposure. IAQCC allows simulation of indoor gas and particle concentrations with outdoor influences, indoor materials and activity emissions, particle deposition and coagulation, gas reactions, and SVOC partitioning. These key processes are fundamentally linked to temperature and relative humidity. With the aid of the building physics model, the indoor temperature and humidity, and pollutant transport in building zones can be simulated. The exposure model refers to the calculated concentrations and provides evaluations of indoor thermal comfort and exposure to gaseous, particulate, and microbial pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Mudança Climática , Umidade , Temperatura
3.
Indoor Air ; 32(1): e12927, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473382

RESUMO

Indoor air concentrations of formaldehyde, furfural, benzaldehyde, and 11 aliphatic aldehydes (C2 -C11 ) were measured in residences of 639 participants in the German Environmental Survey for Children and Adolescents 2014-2017 (GerES V). Sampling was conducted using passive samplers over periods of approximately seven days for each participant. The most abundant compounds were formaldehyde and hexanal with median concentrations of 24.9 µg m-3 and 10.9 µg m-3 , respectively. Formaldehyde concentrations exceeded the Guide Value I recommended by the German Committee on Indoor Guide Values (Ausschuss für Innenraumrichtwerte - AIR) (0.10 mg m-3 ) for 0.3% of the participating residences. The sum of aliphatic n-aldehydes between C4 (butanal) and C11 (undecanal) exceeded their Guide Value (0.10 mg m-3 ) for 2.0% of the residences. The geometric mean concentrations of most aldehydes were lower than in the earlier GerES IV (2003-2006) study. Formaldehyde and hexanal concentrations, however, were comparable in both studies and showed no significant difference. Indoor aldehyde concentrations did not exhibit significant correlations with factors collected in questionnaires, such as the age of the participants, their socio-economic status, the location of the residence (former East/West Germany), migration background, tobacco exposure, and the type of furniture used. The validity of the passive sampler measurements was verified against active sampling techniques in a test chamber experiment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Adolescente , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Aldeídos/análise , Benzaldeídos , Criança , Monitoramento Ambiental/métodos , Formaldeído/análise , Furaldeído , Humanos , Inquéritos e Questionários
4.
Artigo em Alemão | MEDLINE | ID: mdl-34739549

RESUMO

Exhaled aerosol particles play an important role in the transmission of SARS-CoV­2, particularly when many people gather indoors. This article summarises the knowledge on virus transmission in schools and practical measures to reduce aerosol-driven infections. A central preventive measure is to enhance room and building ventilation, i.e. the exchange of possibly contaminated indoor air with ambient air. Besides the concentrations of possibly infectious particles, ventilation reduces carbon dioxide concentrations, humidity and other chemical substances in indoor air as well. Irrespective of ventilation, face masks (surgical or FFP2) represent a vital part of hygiene measures. Fixed or mobile air purifiers can support these measures particularly when rooms providing only poor ventilation must be utilized. The article reflects the state of knowledge in October 2021 of the various techniques that have been shown as useful for the prevention of indirect infections. New variants of SARS-CoV­2, the progress of the vaccination campaign in children and adolescents, and the increase in general immunity might require a re-evaluation of the prevention strategies described. The COVID-19 pandemic has revealed common deficits in room and building ventilation, not least in schools. Apart from short-term measures for the prevention of airborne infectious diseases, a long-term strategy seems advisable to alleviate the deficits encountered in schools with respect to room and building ventilation. In view of a permanent improvement of indoor air and prevention against airborne infections the fitting of schools with fixed ventilation systems - preferably including heat and moisture recovery - appears to be a sustainable social investment.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Adolescente , Aerossóis , Criança , Alemanha , Humanos , Pandemias , SARS-CoV-2 , Instituições Acadêmicas
5.
Indoor Air ; 31(3): 818-831, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33247488

RESUMO

More representative data on source-specific particle number emission rates and associated exposure in European households are needed. In this study, indoor and outdoor particle number size distributions (10-800 nm) were measured in 40 German households under real-use conditions in over 500 days. Particle number emission rates were derived for around 800 reported indoor source events. The highest emission rate was caused by burning candles (5.3 × 1013  h-1 ). Data were analyzed by the single-parameter approach (SPA) and the indoor aerosol dynamics model approach (IAM). Due to the consideration of particle deposition, coagulation, and time-dependent ventilation rates, the emission rates of the IAM approach were about twice as high as those of the SPA. Correction factors are proposed to convert the emission rates obtained from the SPA approach into more realistic values. Overall, indoor sources contributed ~ 56% of the daily-integrated particle number exposure in households under study. Burning candles and opening the window leads to seasonal differences in the contributions of indoor sources to residential exposure (70% and 40% in the cold and warm season, respectively). Application of the IAM approach allowed to attribute the contributions of outdoor particles to the penetration through building shell and entry through open windows (26% and 15%, respectively).


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Material Particulado , Aerossóis , Características da Família , Humanos , Tamanho da Partícula , Estações do Ano , Ventilação
6.
Sci Total Environ ; 663: 265-274, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711593

RESUMO

Recent studies demonstrate that Black Carbon (BC) pollution in economically developing megacities remain higher than the values, which the World Health Organization considers to be safe. Despite the scientific evidence of the degrees of BC exposure, there is still a lack of understanding on how the severe levels of BC pollution affect human health in these regions. We consider information on the respiratory tract deposition dose (DD) of BC to be essential in understanding the link between personal exposure to air pollutants and corresponding health effects. In this work, we combine data on fine and ultrafine refractory particle number concentrations (BC proxy), and activity patterns to derive the respiratory tract deposited amounts of BC particles for the population of the highly polluted metropolitan area of Manila, Philippines. We calculated the total DD of refractory particles based on three metrics: refractory particle number, surface area, and mass concentrations. The calculated DD of total refractory particle number in Metro Manila was found to be 1.6 to 17 times higher than average values reported from Europe and the U.S. In the case of Manila, ultrafine particles smaller than 100 nm accounted for more than 90% of the total deposited refractory particle dose in terms of particle number. This work is a first attempt to quantitatively evaluate the DD of refractory particles and raise awareness in assessing pollution-related health effects in developing megacities. We demonstrate that the majority of the population may be highly affected by BC pollution, which is known to have negative health outcomes if no actions are taken to mitigate its emission. For the governments of such metropolitan areas, we suggest to revise currently existing environmental legislation, raise public awareness, and to establish supplementary monitoring of black carbon in parallel to already existing PM10 and PM2.5 measures.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Exposição por Inalação/análise , Material Particulado/análise , Adolescente , Adulto , Criança , Cidades , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Filipinas , Adulto Jovem
7.
Artigo em Alemão | MEDLINE | ID: mdl-29737507

RESUMO

People in Central Europe spend most of their time in private dwellings, offices, education centres or other public buildings. In these indoor places, they are exposed to a variety of gaseous or particulate pollutants that potentially exert adverse health effects. This work compiles current fields of action that are discussed in the public, among expert panels, and in the scientific community. These address ventilation in buildings, the impact of building product emissions and particulate matter sources on indoor air quality, the detection and prevention of mould as well as the assessment of indoor air quality using guidance values and the determination of the internal exposure by human biomonitoring. Indoor air quality appears as a dynamic field of action that has become more complex due to the interaction between new chemicals introduced into the indoor environment through a variety of products and the observed reduction of ventilation rates. Implications for human health have thus become less predictable.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Europa (Continente) , Alemanha , Humanos
9.
Sci Data ; 4: 170003, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28291234

RESUMO

Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.

10.
Environ Int ; 66: 1-10, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24503484

RESUMO

Ultrafine particles (UFPs; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts.


Assuntos
Poluentes Atmosféricos/análise , Cidades , Exposição Ambiental , Monitoramento Ambiental , Emissões de Veículos/análise , Ásia , Europa (Continente) , Humanos , Emissões de Veículos/legislação & jurisprudência
11.
Sci Total Environ ; 435-436: 541-50, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22895165

RESUMO

The success of epidemiological studies depends on the use of appropriate exposure variables. The purpose of this study is to extract a relatively small selection of variables characterizing ambient particulate matter from a large measurement data set. The original data set comprised a total of 96 particulate matter variables that have been continuously measured since 2004 at an urban background aerosol monitoring site in the city of Augsburg, Germany. Many of the original variables were derived from measured particle size distribution (PSD) across the particle diameter range 3 nm to 10 µm, including size-segregated particle number concentration, particle length concentration, particle surface concentration and particle mass concentration. The data set was complemented by integral aerosol variables. These variables were measured by independent instruments, including black carbon, sulfate, particle active surface concentration and particle length concentration. It is obvious that such a large number of measured variables cannot be used in health effect analyses simultaneously. The aim of this study is a pre-screening and a selection of the key variables that will be used as input in forthcoming epidemiological studies. In this study, we present two methods of parameter selection and apply them to data from a two-year period from 2007 to 2008. We used the agglomerative hierarchical cluster method to find groups of similar variables. In total, we selected 15 key variables from 9 clusters which are recommended for epidemiological analyses. We also applied a two-dimensional visualization technique called "heatmap" analysis to the Spearman correlation matrix. 12 key variables were selected using this method. Moreover, the positive matrix factorization (PMF) method was applied to the PSD data to characterize the possible particle sources. Correlations between the variables and PMF factors were used to interpret the meaning of the cluster and the heatmap analyses.


Assuntos
Análise por Conglomerados , Interpretação Estatística de Dados , Métodos Epidemiológicos , Material Particulado/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Alemanha , Humanos , Modelos Químicos , Tamanho da Partícula , Emissões de Veículos/análise
12.
Environ Sci Technol ; 44(9): 3539-45, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20355702

RESUMO

Exposure to ambient particulate matter (PM) is associated with respiratory and cardiovascular disease and lung cancer. In this study, we used size fractionated PM samples (3-7, 1.5-3, 0.95-1.5, 0.5-0.95, and <0.5 microm), collected at four contrasting locations (three urban sites, one remote background) in the UK with a Sierra-Andersen high volume cascade impactor. The H(2)O(2)-dependent oxidant generating capacity of the samples was determined by electron spin resonance with 5,5-dimethyl-1-pyrroline-N-oxide spin trapping. In A549 human lung epithelial cells, we determined the cytotoxicity of samples by LDH assay, and interleukin-8 (IL-8) release as an indicator of their inflammatory potency. Oxidative DNA damage was measured by the formamido-pyrimidine-glycosylase (fpg)-modified comet assay. Marked contrasts were observed for all endpoints. Remote background PM showed the lowest oxidant potential, was neither cytotoxic nor genotoxic and did not increase IL-8 release. For the other samples, effects were found to depend more on sampling location than on size fraction. PM collected at high-traffic locations generally showed the strongest oxidant capacity and toxicity. Significant correlations were observed between the oxidant generating potential and all toxicological endpoints investigated, which demonstrates that measurement of the oxidant generating potential by ESR represents a sensitive method to estimate the toxic potential of PM.


Assuntos
Células Epiteliais/química , Pulmão/citologia , Oxidantes/química , Material Particulado/química , Linhagem Celular Tumoral , Ensaio Cometa , Dano ao DNA , Ensaio de Imunoadsorção Enzimática , Humanos , Peróxido de Hidrogênio/química , Interleucina-8/metabolismo , Pulmão/metabolismo , Estresse Oxidativo , Oxigênio/química , Tamanho da Partícula , Detecção de Spin
13.
Environ Sci Technol ; 42(14): 5087-93, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18754352

RESUMO

The apparent particle density of particulate matter with aerodynamic diameter < 2.5 microm (rho2.5) was determined at an urban site in Augsburg, Germany and its correlation with chemical composition and meteorological conditions was investigated. rho2.5 showed strong day-to-day variation from 1.05 to 2.36 g cm(-3) (5 to 95% percentile), and nearly 64% of the daily variability could be explained by a multiple variable regression model. A minimum in the morning and afternoon (about 1.5 g cm(-3)), and a maximum (near 1.8 g cm(-3)) during midday was observed. The minima represent fresh primary aerosol emissions, which were related to traffic soot particles with low density due to their agglomerate structure, especially observed in the early morning hours of weekdays. The maximum is likely due to increased secondary particle production and the presence of more aged particles with the built-up of the convectively mixed boundary layer. rho2.5 has the potential to serve as a crude tracer for chemical composition and atmospheric processing and might play an important role when considering the associations between health effects and ambient particles.


Assuntos
Poluentes Atmosféricos/química , Cidades , Material Particulado/química , Periodicidade , Estações do Ano , Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental , Alemanha , Humanos , Exposição por Inalação , Tamanho da Partícula , Análise de Regressão , Tempo (Meteorologia)
14.
J Environ Monit ; 10(9): 1017-24, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18728893

RESUMO

Long-term observations of atmospheric constituents such as aerosol particles are increasingly needed to assess their impact on climate and human health. In contrast to particle mass concentration (MC), there are currently no standardized quality control (QC) and quality assurance (QA) procedures for the measurement of particle size distribution (PSD). This study describes some fundamental QC and QA procedures associated with the collection and evaluation of a 2 year dataset between 2005 and 2006 at an urban background monitoring site in Augsburg, Germany. The considered parametres include ambient PSD between 3 nm and 10 microm (merged from a twin differential mobility and an aerodynamic particle sizer, TDMPS and APS, respectively) as well as total particle number (TNC), length (LC) and MC determined by independent instruments. The hourly 1st and 0th moment of PSD showed good correlations with the independently measured LC (R(2) = 0.86) and TNC (R(2) = 0.79), respectively, the deviation for LC with 4% and for TNC with 22% being rather small. The volume concentration (3rd moment) of hourly measured PSD and the resultant MC (when assuming a realistic apparent density of 1.5 g cm(-3)) correlated well with the independently measured MC of PM(2.5) or PM(10) (R(2) > 0.86) and showed only small deviation from PM(2.5) (1%) or PM(10) (5%), respectively. The study demonstrates that the described QC and QA measures define both a high accuracy of the PSD measurements and their long-term comparability against data obtained in similar measurement programmes.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Tamanho da Partícula , Controle de Qualidade , Saúde da População Urbana , Alemanha
15.
Environ Sci Technol ; 40(4): 1144-53, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16572768

RESUMO

The abundance and the behavior of metals (Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Se, Ag, Cd, Sn, Ba, Pt, Hg, and Pb) and ions (Na+ K+ Mg2+ Ca2+, NH4+, Cl-, NO3-, SO4(2-), PO4(3-), and oxalate) in size-fractionated atmospheric particulate matter (PM) were studied in the U. K. and Ireland at four observation sites simulating extreme degrees of vehicular-traffic influence in the environment. Trace metals in urban PM showed distinct types of size-fractionated behavior depending on the particle sources from which they originate. In coarse PM (1.5 < Dp < 3.0 microm) the concentrations of copper, barium, and iron correlated closely across over 2 orders of magnitude in urban air, which is seen as evidence that major portions of transition metals (Cu, Ba, Fe, and Mn) are released through abrasive vehicular emissions, particularly the wear of brake linings. Further results are strongly indicative of a decoupling of coarse iron and calcium, the former arising predominantly from vehicles, the latter from soil resuspension. In fine PM (Dp < 0.5 microm), several combustion and secondary sources of particulates were identified, but these were much less unique in terms of elemental fingerprints. An analysis of the water solubility of trace metals yielded that solubility varies considerably with element and, to a lesser extent, with particle size. Notable differences were found to the elemental water solubilities determined in previous work, partially explained by differences in extraction procedures.


Assuntos
Poluentes Atmosféricos/análise , Metais/análise , Poluentes Atmosféricos/química , Cidades , Monitoramento Ambiental , Metais/química , Veículos Automotores , Tamanho da Partícula , Solubilidade , Reino Unido , Emissões de Veículos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...