Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 557: 182-191, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30584908

RESUMO

Nanoparticles based on biodegradable polymers are well-known as approved carrier systems for a diversity of drugs. Despite their advantages, such as the option of an active drug targeting or the physicochemical protection of instable payloads, the controlled drug release often underlies intra- and interindividual influences and is therefore difficult to predict. To circumvent this limitation, the release behavior can be optimized using light-responsive materials for the nanoparticle preparation. The resulting light-responsive nanoparticles are able to release the embedded drug after an external light-stimulus, thereby increasing efficacy and safety of the therapy. In the present study light-responsive self-immolative polymers were used for the nanoparticle manufacturing. Light-responsive polycarbonates (LrPC) as well as PEGylated LrPC (LrPC-PEG) were synthesized via ring-opening polymerization of trimethylene carbonate-based monomers and fully physico-chemically characterized. Light-responsive nano formulations were obtained by blending LrPC or (LrPC-PEG) with the FDA-approved polymer poly(DL-lactide-co-glycolide) (PLGA). The nanoparticles were loaded with the photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorin (mTHPC). The light-induced nanoparticle degradation was analyzed as well as the drug release behavior with and without illumination. Furthermore, biological safety of the degradation products was investigated in an in vitro cell culture study.


Assuntos
Sistemas de Liberação de Medicamentos , Luz , Mesoporfirinas/administração & dosagem , Nanopartículas , Fármacos Fotossensibilizantes/administração & dosagem , Polímeros , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/efeitos da radiação , Fotoquimioterapia , Polímeros/administração & dosagem , Polímeros/efeitos da radiação
2.
Biomacromolecules ; 19(12): 4677-4690, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30433767

RESUMO

Aliphatic poly(carbonate)s (APCs) with rapid and controlled degradation upon specific stimulation have great advantages for a variety of biomedical and pharmaceutical applications. In the present work, we reported a new poly(trimethylene carbonate) (PTMC)-based copolymer containing multiple 4,5-dimethoxy-2-nitrobenzyl photo cleavable groups as pendent chains. The six-membered light-responsive cyclic carbonate monomer (LrM) was first prepared from 2-(hydroxymethyl)-2-methylpropane-1,3-diol and 4,5-dimethoxy-2-nitrobenzyl alcohol and then copolymerized with trimethylene carbonate (TMC) by 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) catalyzed ring-opening polymerization (ROP) to afford the light-responsive polycarbonate (LrPC). The light-triggered decomposition of LrM and LrPC was studied by NMR, UV/vis spectroscopy, and size exclusion chromatography (SEC), as well as ESI-ToF mass spectrometry. Stable monodisperse nanoparticles with hydrodynamic diameter of 100 nm could be formulated from 25% LrPC and 75% poly(lactide- co-glycolide) (PLGA) and applied for the encapsulation of temoporfin. Upon irradiation with UV light these particles displayed a significant decrease of the particle countrate and increased the release rate of temoporfin in comparison to standard PLGA nanoparticles. This work demonstrated that a combination of encapsulation of photosensitizer and light degradation using light-responsive polymers is suitable to enhance photodynamic therapy (PDT).


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Fotoquimioterapia , Poliésteres/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/efeitos da radiação , Catálise , Dioxanos/química , Ácidos Graxos/química , Humanos , Luz , Mesoporfirinas/química , Fármacos Fotossensibilizantes/química , Cimento de Policarboxilato/química
3.
Chem Soc Rev ; 42(17): 7391-420, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23677178

RESUMO

Although the technological and scientific importance of functional polymers has been well established over the last few decades, the most recent focus that has attracted much attention has been on stimuli-responsive polymers. This group of materials is of particular interest due to its ability to respond to internal and/or external chemico-physical stimuli, which is often manifested as large macroscopic responses. Aside from scientific challenges of designing stimuli-responsive polymers, the main technological interest lies in their numerous applications ranging from catalysis through microsystem technology and chemomechanical actuators to sensors that have been extensively explored. Since the phase transition phenomenon of hydrogels is theoretically well understood advanced materials based on the predictions can be prepared. Since the volume phase transition of hydrogels is a diffusion-limited process the size of the synthesized hydrogels is an important factor. Consistent downscaling of the gel size will result in fast smart gels with sufficient response times. In order to apply smart gels in microsystems and sensors, new preparation techniques for hydrogels have to be developed. For the up-coming nanotechnology, nano-sized gels as actuating materials would be of great interest.

4.
Nano Lett ; 12(1): 348-53, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22149218

RESUMO

First lab-on-chip devices based on active transport by biomolecular motors have been demonstrated for basic detection and sorting applications. However, to fully employ the advantages of such hybrid nanotechnology, versatile spatial and temporal control mechanisms are required. Using a thermo-responsive polymer, we demonstrate the selective starting and stopping of modified microtubules gliding on a kinesin-1-coated surface. This approach allows the self-organized separation of multiple microtubule populations and their respective cargoes.


Assuntos
Cinesinas/química , Cinesinas/ultraestrutura , Técnicas Analíticas Microfluídicas/instrumentação , Microtúbulos/química , Microtúbulos/ultraestrutura , Proteínas Motores Moleculares/química , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...