Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5008, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866766

RESUMO

Kagome vanadates AV3Sb5 display unusual low-temperature electronic properties including charge density waves (CDW), whose microscopic origin remains unsettled. Recently, CDW order has been discovered in a new material ScV6Sn6, providing an opportunity to explore whether the onset of CDW leads to unusual electronic properties. Here, we study this question using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). The ARPES measurements show minimal changes to the electronic structure after the onset of CDW. However, STM quasiparticle interference (QPI) measurements show strong dispersing features related to the CDW ordering vectors. A plausible explanation is the presence of a strong momentum-dependent scattering potential peaked at the CDW wavevector, associated with the existence of competing CDW instabilities. Our STM results further indicate that the bands most affected by the CDW are near vHS, analogous to the case of AV3Sb5 despite very different CDW wavevectors.

2.
Nature ; 631(8019): 60-66, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867046

RESUMO

Broken time-reversal symmetry in the absence of spin order indicates the presence of unusual phases such as orbital magnetism and loop currents1-4. The recently discovered kagome superconductors AV3Sb5 (where A is K, Rb or Cs)5,6 display an exotic charge-density-wave (CDW) state and have emerged as a strong candidate for materials hosting a loop current phase. The idea that the CDW breaks time-reversal symmetry7-14 is, however, being intensely debated due to conflicting experimental data15-17. Here we use laser-coupled scanning tunnelling microscopy to study RbV3Sb5. By applying linearly polarized light along high-symmetry directions, we show that the relative intensities of the CDW peaks can be reversibly switched, implying a substantial electro-striction response, indicative of strong nonlinear electron-phonon coupling. A similar CDW intensity switching is observed with perpendicular magnetic fields, which implies an unusual piezo-magnetic response that, in turn, requires time-reversal symmetry breaking. We show that the simplest CDW that satisfies these constraints is an out-of-phase combination of bond charge order and loop currents that we dub a congruent CDW flux phase. Our laser scanning tunnelling microscopy data open the door to the possibility of dynamic optical control of complex quantum phenomenon in correlated materials.


Assuntos
Supercondutividade , Microscopia de Tunelamento , Campos Magnéticos , Fônons , Elétrons , Luz
3.
Nat Commun ; 15(1): 5304, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914537

RESUMO

Advancements in materials synthesis have been key to unveil the quantum nature of electronic properties in solids by providing experimental reference points for a correct theoretical description. Here, we report hidden transport phenomena emerging in the ultraclean limit of the archetypical correlated electron system SrVO3. The low temperature, low magnetic field transport was found to be dominated by anisotropic scattering, whereas, at high temperature, we find a yet undiscovered phase that exhibits clear deviations from the expected Landau Fermi liquid, which is reminiscent of strange-metal physics in materials on the verge of a Mott transition. Further, the high sample purity enabled accessing the high magnetic field transport regime at low temperature, which revealed an anomalously high Hall coefficient. Taken with the strong anisotropic scattering, this presents a more complex picture of SrVO3 that deviates from a simple Landau Fermi liquid. These hidden transport anomalies observed in the ultraclean limit prompt a theoretical reexamination of this canonical correlated electron system beyond the Landau Fermi liquid paradigm, and more generally serves as an experimental basis to refine theoretical methods to capture such nontrivial experimental consequences emerging in correlated electron systems.

4.
Nat Commun ; 15(1): 1399, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360692

RESUMO

Despite their highly anisotropic complex-oxidic nature, certain delafossite compounds (e.g., PdCoO2, PtCoO2) are the most conductive oxides known, for reasons that remain poorly understood. Their room-temperature conductivity can exceed that of Au, while their low-temperature electronic mean-free-paths reach an astonishing 20 µm. It is widely accepted that these materials must be ultrapure to achieve this, although the methods for their growth (which produce only small crystals) are not typically capable of such. Here, we report a different approach to PdCoO2 crystal growth, using chemical vapor transport methods to achieve order-of-magnitude gains in size, the highest structural qualities yet reported, and record residual resistivity ratios ( > 440). Nevertheless, detailed mass spectrometry measurements on these materials reveal that they are not ultrapure in a general sense, typically harboring 100s-of-parts-per-million impurity levels. Through quantitative crystal-chemical analyses, we resolve this apparent dichotomy, showing that the vast majority of impurities are forced to reside in the Co-O octahedral layers, leaving the conductive Pd sheets highly pure (∼1 ppm impurity concentrations). These purities are shown to be in quantitative agreement with measured residual resistivities. We thus conclude that a sublattice purification mechanism is essential to the ultrahigh low-temperature conductivity and mean-free-path of metallic delafossites.

5.
Nat Commun ; 14(1): 7795, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016999

RESUMO

The Sabatier principle and the scaling relations have been widely used to search for and screen new catalysts in the field of catalysis. However, these powerful tools can also serve as limitations of catalyst control and breakthrough. To overcome this challenge, this work proposes an efficient method of studying catalyst control by support polarization from first-principles. The results demonstrate that the properties of catalysts are determined by support polarization, irrespective of the magnitude of spontaneous polarization of support. The approach enables elucidating the scaling relations between binding energies at various polarization values of support. Moreover, we observe the breakdown of scaling relations for the surface controlled by support polarization. By studying the surface electronic structure and decomposing the induced charge into contributions from different atoms and orbitals, we identify the inherent structural property of the interface that leads to the breaking of the scaling relations. Specifically, the displacements of the underlying oxide support impose its symmetry on the catalyst, causing the scaling relations between different adsorption sites to break.

7.
Nano Lett ; 23(16): 7576-7583, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37535801

RESUMO

Using in situ atomic-resolution scanning transmission electron microscopy, atomic movements and rearrangements associated with diffusive solid to solid phase transformations in the Pt-Sn system are captured to reveal details of the underlying atomistic mechanisms that drive these transformations. In the PtSn4 to PtSn2 phase transformation, a periodic superlattice substructure and a unique intermediate structure precede the nucleation and growth of the PtSn2 phase. At the atomic level, all stages of the transformation are templated by the anisotropic crystal structure of the parent PtSn4 phase. In the case of the PtSn2 to Pt2Sn3 transformation, the anisotropy in the structure of product Pt2Sn3 dictates the path of transformation. Analysis of atomic configurations at the transformation front elucidates the diffusion pathways and lattice distortions required for these phase transformations. Comparison of multiple Pt-Sn phase transformations reveals the structural parameters governing solid to solid phase transformations in this technologically interesting intermetallic system.

8.
Nature ; 613(7942): 48-52, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600069

RESUMO

Achieving electrostatic control of quantum phases is at the frontier of condensed matter research. Recent investigations have revealed superconductivity tunable by electrostatic doping in twisted graphene heterostructures and in two-dimensional semimetals such as WTe2 (refs. 1-5). Some of these systems have a polar crystal structure that gives rise to ferroelectricity, in which the interlayer polarization exhibits bistability driven by external electric fields6-8. Here we show that bilayer Td-MoTe2 simultaneously exhibits ferroelectric switching and superconductivity. Notably, a field-driven, first-order superconductor-to-normal transition is observed at its ferroelectric transition. Bilayer Td-MoTe2 also has a maximum in its superconducting transition temperature (Tc) as a function of carrier density and temperature, allowing independent control of the superconducting state as a function of both doping and polarization. We find that the maximum Tc is concomitant with compensated electron and hole carrier densities and vanishes when one of the Fermi pockets disappears with doping. We argue that this unusual polarization-sensitive two-dimensional superconductor is driven by an interband pairing interaction associated with nearly nested electron and hole Fermi pockets.

9.
Nat Commun ; 13(1): 7774, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522321

RESUMO

Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition. Such valence transitions, particularly when triggering spin-state and metal-insulator transitions, offer highly appealing functionality, but have thus far been confined to cryogenic temperatures in bulk materials (e.g., 90 K in Pr1-xCaxCoO3). Here, we show that in thin films of the complex perovskite (Pr1-yYy)1-xCaxCoO3-δ, heteroepitaxial strain tuning enables stabilization of valence-driven spin-state/structural/metal-insulator transitions to at least 291 K, i.e., around room temperature. The technological implications of this result are accompanied by fundamental prospects, as complete strain control of the electronic ground state is demonstrated, from ferromagnetic metal under tension to nonmagnetic insulator under compression, thereby exposing a potential novel quantum critical point.

10.
Nature ; 602(7896): 216-217, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140382
11.
Phys Rev Lett ; 127(8): 087601, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477429

RESUMO

Doping ferroelectrics with carriers is often detrimental to polarization. This makes the design and discovery of metals that undergo a ferroelectriclike transition challenging. In this Letter, we show from first principles that the oxygen octahedral rotations in perovskites are often enhanced by electron doping, and this can be used as a means to strengthen the structural polarization in certain hybrid-improper ferroelectrics-compounds in which the polarization is not stabilized by the long-range Coulomb interactions but is instead induced by a trilinear coupling to octahedral rotations. We use this design strategy to predict a cation ordered Ruddlesden-Popper compound that can be driven into a metallic ferroelectriclike phase via electrolyte gating.

12.
Phys Rev Lett ; 127(4): 049702, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355961
13.
Nano Lett ; 21(10): 4357-4364, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33973791

RESUMO

Distinct dopant behaviors inside and outside dislocation cores are identified by atomic-resolution electron microscopy in perovskite BaSnO3 with considerable consequences on local atomic and electronic structures. Driven by elastic strain, when A-site designated La dopants segregate near a dislocation core, the dopant atoms accumulate at the Ba sites in compressively strained regions. This triggers formation of Ba vacancies adjacent to the core atomic sites resulting in reconstruction of the core. Notwithstanding the presence of extremely large tensile strain fields, when La atoms segregate inside the dislocation core, they become B-site dopants, replacing Sn atoms and compensating the positive charge of the core oxygen vacancies. Electron energy-loss spectroscopy shows that the local electronic structure of these dislocations changes dramatically due to segregation of the dopants inside and around the core ranging from formation of strong La-O hybridized electronic states near the conduction band minimum to insulator-to-metal transition.

14.
Sci Adv ; 7(3)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523903

RESUMO

A line defect with metallic characteristics has been found in optically transparent BaSnO3 perovskite thin films. The distinct atomic structure of the defect core, composed of Sn and O atoms, was visualized by atomic-resolution scanning transmission electron microscopy (STEM). When doped with La, dopants that replace Ba atoms preferentially segregate to specific crystallographic sites adjacent to the line defect. The electronic structure of the line defect probed in STEM with electron energy-loss spectroscopy was supported by ab initio theory, which indicates the presence of Fermi level-crossing electronic bands that originate from defect core atoms. These metallic line defects also act as electron sinks attracting additional negative charges in these wide-bandgap BaSnO3 films.

15.
Sci Adv ; 6(31): eabb7721, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32832693

RESUMO

Increasingly impressive demonstrations of voltage-controlled magnetism have been achieved recently, highlighting potential for low-power data processing and storage. Magnetoionic approaches appear particularly promising, electrolytes and ionic conductors being capable of on/off control of ferromagnetism and tuning of magnetic anisotropy. A clear limitation, however, is that these devices either electrically tune a known ferromagnet or electrically induce ferromagnetism from another magnetic state, e.g., antiferromagnetic. Here, we demonstrate that ferromagnetism can be voltage-induced even from a diamagnetic (zero-spin) state suggesting that useful magnetic phases could be electrically induced in "nonmagnetic" materials. We use ionic liquid-gated diamagnetic FeS2 as a model system, showing that as little as 1 V induces a reversible insulator-metal transition by electrostatic surface inversion. Anomalous Hall measurements then reveal electrically tunable surface ferromagnetism at up to 25 K. Density functional theory-based modeling explains this in terms of Stoner ferromagnetism induced via filling of a narrow e g band.

16.
ACS Appl Mater Interfaces ; 12(27): 30520-30529, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515187

RESUMO

Expanding the application space of transparent electrodes toward the ultraviolet range has been found challenging when utilizing the conventional approach to degenerately dope semiconductors with band gaps larger than ZnO or In2O3. Here, it is shown that the correlated metal SrxNbO3 with x < 1 is ideally suited as a UV-transparent electrode material, enabling UV light-emitting diodes for a wide range of applications from water disinfection to polymer curing. It is demonstrated that SrxNbO3 thin films can be grown by radio frequency (RF) sputtering and that they remain in the perovskite phase despite a sizeable Sr deficiency. The electrical and optical properties are characterized and compared to those of commonly used indium tin oxide (ITO) and Sn-doped Ga2O3 transparent conductor standards. SrxNbO3 films were found to have sheet resistances as low as 30 Ω sq-1 with optical transmission at a wavelength of 280 nm up to 86%, marking a two-order-of-magnitude increase over the performance of traditional UV-transparent conductors. The compatibility of SrxNbO3 with a physical vapor deposition technique that is widely employed in the transparent conductor coating industry along with the robustness of the highly electrically conducting and optically transparent perovskite phase makes it an ideal transparent electrode for applications in the UV spectrum.

17.
Phys Rev Lett ; 124(16): 167203, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383953

RESUMO

Spin-1 antiferromagnets are abundant in nature, but few theories exist to understand their properties and behavior when geometric frustration is present. Here we study the S=1 kagome compound Na_{2}Ti_{3}Cl_{8} using a combination of density functional theory, exact diagonalization, and density matrix renormalization group approaches to achieve a first principles supported explanation of its exotic magnetic phases. We find that the effective magnetic Hamiltonian includes essential non-Heisenberg terms that do not stem from spin-orbit coupling, and both trimerized and spin-nematic magnetic phases are relevant. The experimentally observed structural transition to a breathing kagome phase is driven by spin-lattice coupling, which favors the trimerized magnetic phase against the quadrupolar one. We thus show that lattice effects can be necessary to understand the magnetism in frustrated magnetic compounds and surmise that Na_{2}Ti_{3}Cl_{8} is a compound that cannot be understood from only electronic or only lattice Hamiltonians, very much like VO_{2}.

18.
ACS Appl Mater Interfaces ; 10(50): 43802-43808, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30457322

RESUMO

High-speed electronics require epitaxial films with exceptionally high carrier mobility at room temperature (RT). Alkaline-earth stannates with high RT mobility show outstanding prospects for oxide electronics operating at ambient temperatures. However, despite significant progress over the last few years, mobility in stannate films has been limited by dislocations because of the inability to grow fully coherent films. Here, we demonstrate the growth of coherent, strain-engineered phases of epitaxial SrSnO3 (SSO) films using a radical-based molecular beam epitaxy approach. Compressive strain stabilized the high-symmetry tetragonal phase of SSO at RT, which, in bulk, exists only at temperatures between 1062 and 1295 K. We achieved a mobility enhancement of over 300% in doped films compared with the low-temperature orthorhombic polymorph. Using comprehensive temperature-dependent synchrotron-based X-ray measurements, electronic transport, and first principles calculations, crystal and electronic structures of SSO films were investigated as a function of strain. We argue that strain-engineered films of stannate will enable high mobility oxide electronics operating at RT with the added advantage of being optically transparent.

19.
Nature ; 560(7717): 174-175, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30076377
20.
Phys Rev Lett ; 120(18): 187203, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775328

RESUMO

We study the fundamental question of the lattice dynamics of a metallic ferromagnet in the regime where the static long-range magnetic order is replaced by the fluctuating local moments embedded in a metallic host. We use the ab initio density functional theory + embedded dynamical mean-field theory functional approach to address the dynamic stability of iron polymorphs and the phonon softening with an increased temperature. We show that the nonharmonic and inhomogeneous phonon softening measured in iron is a result of the melting of the long-range ferromagnetic order and is unrelated to the first-order structural transition from the bcc to the fcc phase, as is usually assumed. We predict that the bcc structure is dynamically stable at all temperatures at normal pressure and is thermodynamically unstable only between the bcc-α and the bcc-δ phases of iron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...