Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(3): L032106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632730

RESUMO

We study a one dimensional gas of N noninteracting diffusing particles in a harmonic trap, whose stiffness switches between two values µ_{1} and µ_{2} with constant rates r_{1} and r_{2}, respectively. Despite the absence of direct interaction between the particles, we show that strong correlations between them emerge in the stationary state at long times, induced purely by the dynamics itself. We compute exactly the joint distribution of the positions of the particles in the stationary state, which allows us to compute several physical observables analytically. In particular, we show that the extreme value statistics (EVS), i.e., the distribution of the position of the rightmost particle, has a nontrivial shape in the large N limit. The scaling function characterizing this EVS has a finite support with a tunable shape (by varying the parameters). Remarkably, this scaling function turns out to be universal. First, it also describes the distribution of the position of the kth rightmost particle in a 1d trap. Moreover, the distribution of the position of the particle farthest from the center of the harmonic trap in d dimensions is also described by the same scaling function for all d≥1. Numerical simulations are in excellent agreement with our analytical predictions.

2.
Phys Rev E ; 109(1-1): 014101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366495

RESUMO

Even though strongly correlated systems are abundant, only a few exceptional cases admit analytical solutions. In this paper we present a large class of solvable systems with strong correlations. We consider a set of N independent and identically distributed random variables {X_{1},X_{2},...,X_{N}} whose common distribution has a parameter Y (or a set of parameters) which itself is random with its own distribution. For a fixed value of this parameter Y, the X_{i} variables are independent and we call them conditionally independent and identically distributed. However, once integrated over the distribution of the parameter Y, the X_{i} variables get strongly correlated yet retain a solvable structure for various observables, such as for the sum and the extremes of X_{i}^{'}s. This provides a simple procedure to generate a class of solvable strongly correlated systems. We illustrate how this procedure works via three physical examples where N particles on a line perform independent (i) Brownian motions, (ii) ballistic motions with random initial velocities, and (iii) Lévy flights, but they get strongly correlated via simultaneous resetting to the origin. Our results are verified in numerical simulations. This procedure can be used to generate an endless variety of solvable strongly correlated systems.

3.
Phys Rev E ; 107(6-1): 064141, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464619

RESUMO

We consider N Brownian motions diffusing independently on a line, starting at x_{0}>0, in the presence of an absorbing target at the origin. The walkers undergo stochastic resetting under two protocols: (A) each walker resets independently to x_{0} with rate r and (B) all walkers reset simultaneously to x_{0} with rate r. We derive an explicit analytical expression for the mean first-passage time to the origin in terms of an integral which is evaluated numerically using Mathematica. We show that, as a function of r and for fixed x_{0}, it has a minimum at an optimal value r^{*}>0 as long as NN_{c}, the optimal value occurs at r^{*}=0 indicating that resetting hinders search processes. We obtain different values of N_{c} for protocols A and B; indeed, for N≤7 resetting is beneficial in protocol A, while for N≤6 resetting is beneficial for protocol B. Our theoretical predictions are verified in numerical Langevin simulations.

4.
Phys Rev Lett ; 130(20): 207101, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267543

RESUMO

We study a one-dimensional gas of N Brownian particles that diffuse independently, but are simultaneously reset to the origin at a constant rate r. The system approaches a nonequilibrium stationary state with long-range interactions induced by the simultaneous resetting. Despite the presence of strong correlations, we show that several observables can be computed exactly, which include the global average density, the distribution of the position of the kth rightmost particle, and the spacing distribution between two successive particles. Our analytical results are confirmed by numerical simulations. We also discuss a possible experimental realization of this resetting gas using optical traps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...