Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 307: 155-163, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29935168

RESUMO

Local axonal translation of specific mRNA species plays an important role in axon maintenance, plasticity during development and recovery from injury. Recently, disrupted axonal mRNA transport and translation have been linked to neurodegenerative disorders. To identify mRNA species that are actively transported to axons and play an important role in axonal physiology, we mapped the axonal transcriptome of human induced pluripotent stem cell (iPSC)-derived motor neurons using permeable inserts to obtain large amounts of enriched axonal material for RNA isolation and sequencing. Motor neurons from healthy subjects were used to determine differences in gene expression profiles between neuronal somatodendritic and axonal compartments. Our results demonstrate that several transcripts were enriched in either the axon or neuronal bodies. Gene ontology analysis demonstrated enrichment in the axonal compartment for transcripts associated with mitochondrial electron transport, microtubule-based axonal transport and ER-associated protein catabolism. These results suggest that local translation of mRNAs is required to meet the high-energy demand of axons and to support microtubule-based axonal transport. Interestingly, several transcripts related to human genetic disorders associated with axonal degeneration (inherited axonopathies) were identified among the mRNA species enriched in motor axons.


Assuntos
Transporte Axonal/fisiologia , Axônios/fisiologia , Microtúbulos/metabolismo , Mitocôndrias/fisiologia , Neurônios Motores/fisiologia , Transcriptoma/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Microtúbulos/genética
2.
Am J Hum Genet ; 102(3): 505-514, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499166

RESUMO

Although mutations in more than 90 genes are known to cause CMT, the underlying genetic cause of CMT remains unknown in more than 50% of affected individuals. The discovery of additional genes that harbor CMT2-causing mutations increasingly depends on sharing sequence data on a global level. In this way-by combining data from seven countries on four continents-we were able to define mutations in ATP1A1, which encodes the alpha1 subunit of the Na+,K+-ATPase, as a cause of autosomal-dominant CMT2. Seven missense changes were identified that segregated within individual pedigrees: c.143T>G (p.Leu48Arg), c.1775T>C (p.Ile592Thr), c.1789G>A (p.Ala597Thr), c.1801_1802delinsTT (p.Asp601Phe), c.1798C>G (p.Pro600Ala), c.1798C>A (p.Pro600Thr), and c.2432A>C (p.Asp811Ala). Immunostaining peripheral nerve axons localized ATP1A1 to the axolemma of myelinated sensory and motor axons and to Schmidt-Lanterman incisures of myelin sheaths. Two-electrode voltage clamp measurements on Xenopus oocytes demonstrated significant reduction in Na+ current activity in some, but not all, ouabain-insensitive ATP1A1 mutants, suggesting a loss-of-function defect of the Na+,K+ pump. Five mutants fall into a remarkably narrow motif within the helical linker region that couples the nucleotide-binding and phosphorylation domains. These findings identify a CMT pathway and a potential target for therapy development in degenerative diseases of peripheral nerve axons.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Genes Dominantes , Mutação/genética , ATPase Trocadora de Sódio-Potássio/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Criança , Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , ATPase Trocadora de Sódio-Potássio/química , Adulto Jovem
3.
Hum Mutat ; 39(5): 635-642, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29473246

RESUMO

Charcot-Marie-Tooth disease (CMT) is an umbrella term for inherited neuropathies affecting an estimated one in 2,500 people. Over 120 CMT and related genes have been identified and clinical gene panels often contain more than 100 genes. Such a large genomic space will invariantly yield variants of uncertain clinical significance (VUS) in nearly any person tested. This rise in number of VUS creates major challenges for genetic counseling. Additionally, fewer individual variants in known genes are being published as the academic merit is decreasing, and most testing now happens in clinical laboratories, which typically do not correlate their variants with clinical phenotypes. For CMT, we aim to encourage and facilitate the global capture of variant data to gain a large collection of alleles in CMT genes, ideally in conjunction with phenotypic information. The Inherited Neuropathy Variant Browser provides user-friendly open access to currently reported variation in CMT genes. Geneticists, physicians, and genetic counselors can enter variants detected by clinical tests or in research studies in addition to genetic variation gathered from published literature, which are then submitted to ClinVar biannually. Active participation of the broader CMT community will provide an advance over existing resources for interpretation of CMT genetic variation.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Variação Genética , Internet , Características de Residência , Alelos , Humanos , Ferramenta de Busca , Interface Usuário-Computador
4.
Brain ; 140(12): 3112-3127, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126212

RESUMO

Spastic paraplegia type 5 (SPG5) is a rare subtype of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative disorders defined by progressive neurodegeneration of the corticospinal tract motor neurons. SPG5 is caused by recessive mutations in the gene CYP7B1 encoding oxysterol-7α-hydroxylase. This enzyme is involved in the degradation of cholesterol into primary bile acids. CYP7B1 deficiency has been shown to lead to accumulation of neurotoxic oxysterols. In this multicentre study, we have performed detailed clinical and biochemical analysis in 34 genetically confirmed SPG5 cases from 28 families, studied dose-dependent neurotoxicity of oxysterols in human cortical neurons and performed a randomized placebo-controlled double blind interventional trial targeting oxysterol accumulation in serum of SPG5 patients. Clinically, SPG5 manifested in childhood or adolescence (median 13 years). Gait ataxia was a common feature. SPG5 patients lost the ability to walk independently after a median disease duration of 23 years and became wheelchair dependent after a median 33 years. The overall cross-sectional progression rate of 0.56 points on the Spastic Paraplegia Rating Scale per year was slightly lower than the longitudinal progression rate of 0.80 points per year. Biochemically, marked accumulation of CYP7B1 substrates including 27-hydroxycholesterol was confirmed in serum (n = 19) and cerebrospinal fluid (n = 17) of SPG5 patients. Moreover, 27-hydroxycholesterol levels in serum correlated with disease severity and disease duration. Oxysterols were found to impair metabolic activity and viability of human cortical neurons at concentrations found in SPG5 patients, indicating that elevated levels of oxysterols might be key pathogenic factors in SPG5. We thus performed a randomized placebo-controlled trial (EudraCT 2015-000978-35) with atorvastatin 40 mg/day for 9 weeks in 14 SPG5 patients with 27-hydroxycholesterol levels in serum as the primary outcome measure. Atorvastatin, but not placebo, reduced serum 27-hydroxycholesterol from 853 ng/ml [interquartile range (IQR) 683-1113] to 641 (IQR 507-694) (-31.5%, P = 0.001, Mann-Whitney U-test). Similarly, 25-hydroxycholesterol levels in serum were reduced. In cerebrospinal fluid 27-hydroxycholesterol was reduced by 8.4% but this did not significantly differ from placebo. As expected, no effects were seen on clinical outcome parameters in this short-term trial. In this study, we define the mutational and phenotypic spectrum of SPG5, examine the correlation of disease severity and progression with oxysterol concentrations, and demonstrate in a randomized controlled trial that atorvastatin treatment can effectively lower 27-hydroxycholesterol levels in serum of SPG5 patients. We thus demonstrate the first causal treatment strategy in hereditary spastic paraplegia.


Assuntos
Atorvastatina/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Paraplegia Espástica Hereditária/tratamento farmacológico , Adolescente , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Proliferação de Células , Estudos Transversais , Família 7 do Citocromo P450/genética , Progressão da Doença , Método Duplo-Cego , Família , Feminino , Humanos , Hidroxicolesteróis/metabolismo , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Mutação , Neuritos , Oxisteróis/sangue , Oxisteróis/líquido cefalorraquidiano , Linhagem , Índice de Gravidade de Doença , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Esteroide Hidroxilases/genética , Adulto Jovem
5.
Mol Genet Genomic Med ; 5(3): 280-286, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28546998

RESUMO

BACKGROUND: The genetic causes of many rare inherited motoneuron diseases and ataxias (MND and ATX) remain largely unresolved, especially for sporadic patients, despite tremendous advances in gene discovery. Whole exome data is often available for patients, but it is rarely evaluated for unusual inheritance patterns, such as uniparental disomy (UPD). UPD is the inheritance of two copies of a chromosomal region from one parent, which may generate homozygosity for a deleterious recessive variant from only one carrier-parent. Detection of UPD-caused homozygous disease-causing variants is detrimental to accurate genetic counseling. Whole-exome sequencing can allow for the detection of such events. METHODS: We systematically studied the exomes of a phenotypically heterogeneous cohort of unresolved cases (n = 96 families) to reveal UPD events hindering a diagnosis and to evaluate the prevalence of UPD in recessive MND and ATX. RESULTS: One hereditary spastic paraplegia case harbored homozygous regions spanning 80% of chromosome 16. A homozygous disease-causing mutation in the SPG35 disease gene was then identified within this region. CONCLUSION: This study demonstrates the ability to detect UPD in exome data of index patients. Our results suggest that UPD is a rare mechanism for recessive MND and ATX.

6.
Am J Hum Genet ; 98(4): 597-614, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27040688

RESUMO

Abnormal protein aggregation is observed in an expanding number of neurodegenerative diseases. Here, we describe a mechanism for intracellular toxic protein aggregation induced by an unusual mutation event in families affected by axonal neuropathy. These families carry distinct frameshift variants in NEFH (neurofilament heavy), leading to a loss of the terminating codon and translation of the 3' UTR into an extra 40 amino acids. In silico aggregation prediction suggested the terminal 20 residues of the altered NEFH to be amyloidogenic, which we confirmed experimentally by serial deletion analysis. The presence of this amyloidogenic motif fused to NEFH caused prominent and toxic protein aggregates in transfected cells and disrupted motor neurons in zebrafish. We identified a similar aggregation-inducing mechanism in NEFL (neurofilament light) and FUS (fused in sarcoma), in which mutations are known to cause aggregation in Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis, respectively. In summary, we present a protein-aggregation-triggering mechanism that should be taken into consideration during the evaluation of stop-loss variants.


Assuntos
Regiões 3' não Traduzidas/genética , Axônios/patologia , Filamentos Intermediários/genética , Neurônios Motores/patologia , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Animais , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , Mutação da Fase de Leitura , Humanos , Filamentos Intermediários/metabolismo , Camundongos , Dados de Sequência Molecular , Neurônios Motores/metabolismo , Mutação , Linhagem , Peixe-Zebra/genética
7.
Org Biomol Chem ; 13(35): 9323, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26289493

RESUMO

Correction for 'Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis' by Norah Alqahtani et al., Org. Biomol. Chem., 2015, 13, 7177-7192.

8.
Org Biomol Chem ; 13(26): 7177-92, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26022437

RESUMO

Marine actinomycete-derived natural products continue to inspire chemical and biological investigations. Nocardioazines A and B (3 and 4), from Nocardiopsis sp. CMB-M0232, are structurally unique alkaloids featuring a 2,5-diketopiperazine (DKP) core functionalized with indole C3-prenyl as well as indole C3- and N-methyl groups. The logic of their assembly remains cryptic. Bioinformatics analyses of the Nocardiopsis sp. CMB-M0232 draft genome afforded the noz cluster, split across two regions of the genome, and encoding putative open reading frames with roles in nocardioazine biosynthesis, including cyclodipeptide synthase (CDPS), prenyltransferase, methyltransferase, and cytochrome P450 homologs. Heterologous expression of a twelve gene contig from the noz cluster in Streptomyces coelicolor resulted in accumulation of cyclo-l-Trp-l-Trp DKP (5). This experimentally connected the noz cluster to indole alkaloid natural product biosynthesis. Results from bioinformatics analyses of the noz pathway along with challenges in actinomycete genetics prompted us to use asymmetric synthesis and mass spectrometry to determine biosynthetic intermediates in the noz pathway. The structures of hypothesized biosynthetic intermediates 5 and 12-17 were firmly established through chemical synthesis. LC-MS and MS-MS comparison of these synthetic compounds with metabolites present in chemical extracts from Nocardiopsis sp. CMB-M0232 revealed which of these hypothesized intermediates were relevant in the nocardioazine biosynthetic pathway. This established the early and mid-stages of the biosynthetic pathway, demonstrating that Nocardiopsis performs indole C3-methylation prior to indole C3-normal prenylation and indole N1'-methylation in nocardioazine B assembly. These results highlight the utility of merging bioinformatics analyses, asymmetric synthetic approaches, and mass spectrometric metabolite profiling in probing natural product biosynthesis.


Assuntos
Dicetopiperazinas/metabolismo , Genômica , Análise de Sequência , Dicetopiperazinas/química , Genoma Bacteriano/genética , Modelos Moleculares , Conformação Molecular , Família Multigênica/genética , Nocardiose/enzimologia , Nocardiose/genética , Nocardiose/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Espectrometria de Massas em Tandem
9.
Chembiochem ; 16(6): 990-7, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25755076

RESUMO

Macrolide-pipecolate natural products, such as rapamycin (1) and FK-506 (2), are renowned modulators of FK506-binding proteins (FKBPs). The nocardiopsins, from Nocardiopsis sp. CMB-M0232, are the newest members of this structural class. Here, the biosynthetic pathway for nocardiopsins A-D (4-7) is revealed by cloning, sequencing, and bioinformatic analyses of the nsn gene cluster. In vitro evaluation of recombinant NsnL revealed that this lysine cyclodeaminase catalyzes the conversion of L-lysine into the L-pipecolic acid incorporated into 4 and 5. Bioinformatic analyses supported the conjecture that a linear nocardiopsin precursor is equipped with the hydroxy group required for macrolide closure in a previously unobserved manner by employing a P450 epoxidase (NsnF) and limonene epoxide hydrolase homologue (NsnG). The nsn cluster also encodes candidates for tetrahydrofuran group biosynthesis. The nocardiopsin pathway provides opportunities for engineering of FKBP-binding metabolites and for probing new enzymology in nature's polyketide tailoring arsenal.


Assuntos
Família Multigênica , Sirolimo/metabolismo , Tacrolimo/metabolismo , Actinomycetales/enzimologia , Actinomycetales/genética , Actinomycetales/metabolismo , Sequência de Aminoácidos , Amônia-Liases/química , Amônia-Liases/genética , Amônia-Liases/metabolismo , Biocatálise , Clonagem Molecular , Biologia Computacional , Furanos/metabolismo , Dados de Sequência Molecular , Ácidos Pipecólicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...