Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 135: 448-456, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34624743

RESUMO

In the present study, a combined technology for energetic brewery spent grain (BSG) use in co-digestion with sewage sludge (SS) was presented. A holistic approach that includes the impact of co-substrates and their carriers on the anaerobic digestion (AD) process, and the energetic aspects, was involved. Prior to AD, BSG was pretreated involving the hydrodynamic cavitation (HC); two different carriers were applied: MPW (municipal pre-settled wastewater) and mature landfill leachate (MLL). An orifice plate with a conical concentric hole of 3/10 mm (inlet/outlet diameter) was applied as cavitation device. The initial pressure was 7 bar and the number of recirculation passes through the cavitation zone was 30. The AD experiments were performed in semi-flow reactors, under mesophilic conditions at HRT of 20 and 21 d. In both co-digestion series, the constant co-substrate dose of 6% v/v was adopted. In the presence of cavitated BSG and MPW, a significant increase in biogas/methane production was provided as compared to SS mono-digestion, with the related improvement in kinetic constant by 3.5%. The average biogas yield was 0.48 ± 0.03 m3 kg-1 VS added, while in the control run 0.41 ± 0.03 m3 kg-1 VS added. Using cavitated BSG and MLL, such a beneficial effect was not observed. In both co-digestion series, slightly lower VS removal (as for the control) and stable process performance occurred. Moreover, the improved energy balance was provided. Due to the technological aspects, only co-digestion of cavitated BSG and MPW with SS is recommended for implementation into a full-scale.


Assuntos
Biocombustíveis , Esgotos , Anaerobiose , Reatores Biológicos , Digestão , Metano , Águas Residuárias
2.
PeerJ ; 8: e10590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391884

RESUMO

The present study examines the effect of introducing dried brewery spent grain (BSG), known as the main solid by-product of the brewery industry on biogas yields and kinetics in co-digestion with sewage sludge (SS). The experiment was conducted in semi-continuous anaerobic reactors (supplied once a day) operating under mesophilic conditions (35°C) at different hydraulic retention times (HRT) of 18 and 20 d. In co-digestion runs, the BSG mass to the feed volume ratio was constant and maintained 1:10.The results indicated that the addition of BSG did not influence the biogas production, by comparison with SS mono-digestion (control run). At HRT of 18 d, in the co-digestion run, the average methane yield was 0.27 m3 kg/VSadded, while in the control run the higher value of 0.29 m3 kg/VSaddedwas observed. However, there was no difference in terms of statistical significance. At HRT of 20 d, the methane yield was 0.21 m3 kg/VSadded for both mono- and co-digestion runs. In the BSG presence, the decrease in kinetic constant values was observed. As compared to SS mono-digestion, reductions by 21 and 35% were found at HRT of 20 and 18 d, respectively. However, due to the supplementation of the feedstock with BSG rich in organic compounds, the significantly enhanced energy profits were achieved with the highest value of approx. 40% and related to the longer HRT of 20 d. Importantly, the mono- and co-digestion process proceeded in stable manner. Therefore, the anaerobic co-digestion of SS and BSG might be considered as a cost-effective solution that could contribute to the energy self-efficiency of wastewater treatment plants (WWTPs) and sustainable waste management for breweries.

3.
Waste Manag ; 76: 652-662, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29545073

RESUMO

The main goal of this study was to investigate the co-digestion of sewage sludge and mature landfill leachate pretreated through hydrodynamic cavitation. The process efficiency was analyzed from the aspects of organics removal, biogas production, kinetics and digestate quality. Energy efficiency of the overall treatment was evaluated as well. A dose of hydrodynamically cavitated leachate of 5% v/v was used as a substrate for co-digestion with sewage sludge at a hydraulic retention time of 20 days. This improved the kinetics, biogas production and corresponding yields, as well as digestate quality. Fourier transform infrared photoacoustic spectroscopy analysis seemed to indicate that no new toxic compounds were formed with co-digestion. The investigated two-stage treatment is recommended as a safe and cost-effective method of utilizing mature leachate.


Assuntos
Esgotos/química , Poluentes Químicos da Água/análise , Biocombustíveis , Reatores Biológicos , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...