Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Sci Data ; 3: 160089, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727239

RESUMO

Previous genome-wide association studies (GWAS), conducted by our group and others, have identified loci that harbor risk variants for neurodegenerative diseases, including Alzheimer's disease (AD). Human disease variants are enriched for polymorphisms that affect gene expression, including some that are known to associate with expression changes in the brain. Postulating that many variants confer risk to neurodegenerative disease via transcriptional regulatory mechanisms, we have analyzed gene expression levels in the brain tissue of subjects with AD and related diseases. Herein, we describe our collective datasets comprised of GWAS data from 2,099 subjects; microarray gene expression data from 773 brain samples, 186 of which also have RNAseq; and an independent cohort of 556 brain samples with RNAseq. We expect that these datasets, which are available to all qualified researchers, will enable investigators to explore and identify transcriptional mechanisms contributing to neurodegenerative diseases.


Assuntos
Doença de Alzheimer/genética , Genoma Humano , Doenças Neurodegenerativas/genética , Transcriptoma , Estudo de Associação Genômica Ampla , Humanos
2.
J Neurosci ; 36(13): 3848-59, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27030769

RESUMO

In Alzheimer's disease (AD), the accumulation and deposition of amyloid-ß (Aß) peptides in the brain is a central event. Aß is cleaved from amyloid precursor protein (APP) by ß-secretase and γ-secretase mainly in neurons. Although mutations inAPP,PS1, orPS2cause early-onset familial AD,ABCA7encoding ATP-binding cassette transporter A7 is one of the susceptibility genes for late-onset AD (LOAD), in which itsloss-of-functionvariants increase the disease risk. ABCA7 is homologous to a major lipid transporter ABCA1 and is highly expressed in neurons and microglia in the brain. Here, we show that ABCA7 deficiency altered brain lipid profile and impaired memory in ABCA7 knock-out (Abca7(-/-)) mice. When bred to amyloid model APP/PS1 mice, plaque burden was exacerbated by ABCA7 deficit.In vivomicrodialysis studies indicated that the clearance rate of Aß was unaltered. Interestingly, ABCA7 deletion facilitated the processing of APP to Aß by increasing the levels of ß-site APP cleaving enzyme 1 (BACE1) and sterol regulatory element-binding protein 2 (SREBP2) in primary neurons and mouse brains. Knock-down of ABCA7 expression in neurons caused endoplasmic reticulum stress highlighted by increased level of protein kinase R-like endoplasmic reticulum kinase (PERK) and increased phosphorylation of eukaryotic initiation factor 2α (eIF2α). In the brains of APP/PS1;Abca7(-/-)mice, the level of phosphorylated extracellular regulated kinase (ERK) was also significantly elevated. Together, our results reveal novel pathways underlying the association of ABCA7 dysfunction and LOAD pathogenesis. SIGNIFICANCE STATEMENT: Gene variants inABCA7encoding ATP-binding cassette transporter A7 are associated with the increased risk for late-onset Alzheimer's disease (AD). Importantly, we found the altered brain lipid profile and impaired memory in ABCA7 knock-out mice. The accumulation of amyloid-ß (Aß) peptides cleaved from amyloid precursor protein (APP) in the brain is a key event in AD pathogenesis and we also found that ABCA7 deficit exacerbated brain Aß deposition in amyloid AD model APP/PS1 mice. Mechanistically, we found that ABCA7 deletion facilitated the processing of APP and Aß production by increasing the levels of ß-secretase 1 (BACE1) in primary neurons and mouse brains without affecting the Aß clearance rate in APP/PS1 mice. Our study demonstrates a novel mechanism underlying how dysfunctions of ABCA7 contribute to the risk for AD.


Assuntos
Transportadores de Cassetes de Ligação de ATP/deficiência , Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Transtornos da Memória/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Presenilina-1/genética , Transdução de Sinais/genética
3.
Neurobiol Aging ; 37: 38-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26507310

RESUMO

Posterior cortical atrophy (PCA) is an understudied visual impairment syndrome most often due to "posterior Alzheimer's disease (AD)" pathology. Case studies detected mutations in PSEN1, PSEN2, GRN, MAPT, and PRNP in subjects with clinical PCA. To detect the frequency and spectrum of mutations in known dementia genes in PCA, we screened 124 European-American subjects with clinical PCA (n = 67) or posterior AD neuropathology (n = 57) for variants in genes implicated in AD, frontotemporal dementia, and prion disease using NeuroX, a customized exome array. Frequencies in PCA of the variants annotated as pathogenic or potentially pathogenic were compared against ∼ 4300 European-American population controls from the NHLBI Exome Sequencing Project. We identified 2 rare variants not previously reported in PCA, TREM2 Arg47His, and PSEN2 Ser130Leu. No other pathogenic or potentially pathogenic variants were detected in the screened dementia genes. In this first systematic variant screen of a PCA cohort, we report 2 rare mutations in TREM2 and PSEN2, validate our previously reported APOE ε4 association, and demonstrate the utility of NeuroX.


Assuntos
Doença de Alzheimer/genética , Glicoproteínas de Membrana/genética , Mutação , Presenilina-2/genética , Receptores Imunológicos/genética , Transtornos da Visão/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Exoma/genética , Feminino , Genótipo , Técnicas de Genotipagem/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome
4.
Mol Neurodegener ; 10: 49, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26399695

RESUMO

Following publication of this work, we noticed that we inadvertently failed to include Dr Ferenc Deák in the author list. The author list has now been corrected and the amended authors' contributions section has been modified accordingly below.

5.
Mol Neurodegener ; 10: 18, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25881291

RESUMO

BACKGROUND: Alzheimer's disease is a neurodegenerative disorder in which extracellular deposition of ß-amyloid (Aß) oligomers causes synaptic injury resulting in early memory loss, altered homeostasis, accumulation of hyperphosphorylated tau and cell death. Since proteins in the SNAP (Soluble N-ethylmaleimide-sensitive factor Attachment Protein) REceptors (SNARE) complex are essential for neuronal Aß release at pre-synaptic terminals, we hypothesized that genetically controlled SNARE expression could alter neuronal Aß release at the synapse and hence play an early role in Alzheimer's pathophysiology. RESULTS: Here we report 5 polymorphisms in Vesicle-Associated Membrane Protein 1 (VAMP1), a gene encoding a member of the SNARE complex, associated with bidirectionally altered cerebellar VAMP1 transcript levels (all p<0.05). At the functional level, we demonstrated that control of VAMP1 expression by heterogeneous knockdown in mice resulted in up to 74% reduction in neuronal Aß exocytosis (p<0.001). We performed a case-control association study of the 5 VAMP1 expression regulating polymorphisms in 4,667 Alzheimer's disease patients and 6,175 controls to determine their contribution to Alzheimer's disease risk. We found that polymorphisms associated with increased brain VAMP1 transcript levels conferred higher risk for Alzheimer's disease than those associated with lower VAMP1 transcript levels (p=0.03). Moreover, we also report a modest protective association for a common VAMP1 polymorphism with Alzheimer's disease risk (OR=0.88, p=0.03). This polymorphism was associated with decreased VAMP1 transcript levels (p=0.02) and was functionally active in a dual luciferase reporter gene assay (p<0.01). CONCLUSIONS: Genetically regulated VAMP1 expression in the brain may modify both Alzheimer's disease risk and may contribute to Alzheimer's pathophysiology.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Proteína 1 Associada à Membrana da Vesícula/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Testes Genéticos , Humanos , Camundongos , Sinapses/metabolismo , Proteína 1 Associada à Membrana da Vesícula/metabolismo
6.
Neurobiol Aging ; 36(1): 60-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25189118

RESUMO

We tested association of nine late-onset Alzheimer's disease (LOAD) risk variants from genome-wide association studies (GWAS) with memory and progression to mild cognitive impairment (MCI) or LOAD (MCI/LOAD) in older Caucasians, cognitively normal at baseline and longitudinally evaluated at Mayo Clinic Rochester and Jacksonville (n>2000). Each variant was tested both individually and collectively using a weighted risk score. APOE-e4 associated with worse baseline memory and increased decline with highly significant overall effect on memory. CLU-rs11136000-G associated with worse baseline memory and incident MCI/LOAD. MS4A6A-rs610932-C associated with increased incident MCI/LOAD and suggestively with lower baseline memory. ABCA7-rs3764650-C and EPHA1-rs11767557-A associated with increased rates of memory decline in subjects with a final diagnosis of MCI/LOAD. PICALM-rs3851179-G had an unexpected protective effect on incident MCI/LOAD. Only APOE-inclusive risk scores associated with worse memory and incident MCI/LOAD. The collective influence of the nine top LOAD GWAS variants on memory decline and progression to MCI/LOAD appears limited. Discovery of biologically functional variants at these loci may uncover stronger effects on memory and incident disease.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/psicologia , Memória , Transportadores de Cassetes de Ligação de ATP/genética , Idoso , Idoso de 80 Anos ou mais , Apolipoproteína E4/genética , Clusterina/genética , Disfunção Cognitiva/epidemiologia , Progressão da Doença , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Incidência , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas Monoméricas de Montagem de Clatrina/genética , Receptor EphA1/genética , Risco , População Branca
7.
Alzheimers Res Ther ; 6(4): 39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25324900

RESUMO

INTRODUCTION: MAPT encodes for tau, the predominant component of neurofibrillary tangles that are neuropathological hallmarks of Alzheimer's disease (AD). Genetic association of MAPT variants with late-onset AD (LOAD) risk has been inconsistent, although insufficient power and incomplete assessment of MAPT haplotypes may account for this. METHODS: We examined the association of MAPT haplotypes with LOAD risk in more than 20,000 subjects (n-cases = 9,814, n-controls = 11,550) from Mayo Clinic (n-cases = 2,052, n-controls = 3,406) and the Alzheimer's Disease Genetics Consortium (ADGC, n-cases = 7,762, n-controls = 8,144). We also assessed associations with brain MAPT gene expression levels measured in the cerebellum (n = 197) and temporal cortex (n = 202) of LOAD subjects. Six single nucleotide polymorphisms (SNPs) which tag MAPT haplotypes with frequencies greater than 1% were evaluated. RESULTS: H2-haplotype tagging rs8070723-G allele associated with reduced risk of LOAD (odds ratio, OR = 0.90, 95% confidence interval, CI = 0.85-0.95, p = 5.2E-05) with consistent results in the Mayo (OR = 0.81, p = 7.0E-04) and ADGC (OR = 0.89, p = 1.26E-04) cohorts. rs3785883-A allele was also nominally significantly associated with LOAD risk (OR = 1.06, 95% CI = 1.01-1.13, p = 0.034). Haplotype analysis revealed significant global association with LOAD risk in the combined cohort (p = 0.033), with significant association of the H2 haplotype with reduced risk of LOAD as expected (p = 1.53E-04) and suggestive association with additional haplotypes. MAPT SNPs and haplotypes also associated with brain MAPT levels in the cerebellum and temporal cortex of AD subjects with the strongest associations observed for the H2 haplotype and reduced brain MAPT levels (ß = -0.16 to -0.20, p = 1.0E-03 to 3.0E-03). CONCLUSIONS: These results confirm the previously reported MAPT H2 associations with LOAD risk in two large series, that this haplotype has the strongest effect on brain MAPT expression amongst those tested and identify additional haplotypes with suggestive associations, which require replication in independent series. These biologically congruent results provide compelling evidence to screen the MAPT region for regulatory variants which confer LOAD risk by influencing its brain gene expression.

8.
Mol Neurodegener ; 9: 11, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24607147

RESUMO

Recent genome-wide association studies (GWAS) of late-onset Alzheimer's disease (LOAD) have identified single nucleotide polymorphisms (SNPs) which show significant association at the well-known APOE locus and at nineteen additional loci. Among the functional, disease-associated variants at these loci, missense variants are particularly important because they can be readily investigated in model systems to search for novel therapeutic targets. It is now possible to perform a low-cost search for these "actionable" variants by genotyping the missense variants at known LOAD loci already cataloged on the Exome Variant Server (EVS). In this proof-of-principle study designed to explore the efficacy of this approach, we analyzed three rare EVS variants in APOE, p.L28P, p.R145C and p.V236E, in our case control series of 9114 subjects. p.R145C proved to be too rare to analyze effectively. The minor allele of p.L28P, which was in complete linkage disequilibrium (D' = 1) with the far more common APOE ϵ4 allele, showed no association with LOAD (P = 0.75) independent of the APOE ϵ4 allele. p.V236E was significantly associated with a marked reduction in risk of LOAD (P = 7.5 × 10⁻°5; OR = 0.10, 0.03 to 0.45). The minor allele of p.V236E, which was in complete linkage disequilibrium (D' = 1) with the common APOE ϵ3 allele, identifies a novel LOAD-associated haplotype (APOE ϵ3b) which is associated with decreased risk of LOAD independent of the more abundant APOE ϵ2, ϵ3 and ϵ4 haplotypes. Follow-up studies will be important to confirm the significance of this association and to better define its odds ratio. The ApoE p.V236E substitution is the first disease-associated change located in the lipid-binding, C-terminal domain of the protein. Thus our study (i) identifies a novel APOE missense variant which may profitably be studied to better understand how ApoE function may be modified to reduce risk of LOAD and (ii) indicates that analysis of protein-altering variants cataloged on the EVS can be a cost-effective way to identify actionable functional variants at recently discovered LOAD loci.


Assuntos
Doença de Alzheimer/genética , Apolipoproteínas E/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Idade de Início , Idoso , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade
9.
Neurology ; 82(16): 1455-62, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24670887

RESUMO

OBJECTIVE: To investigate association of genetic risk factors for late-onset Alzheimer disease (LOAD) with risk of posterior cortical atrophy (PCA), a syndrome of visual impairment with predominant Alzheimer disease (AD) pathology in posterior cortical regions, and with risk of "posterior AD" neuropathology. METHODS: We assessed 81 participants with PCA diagnosed clinically and 54 with neuropathologic diagnosis of posterior AD vs 2,523 controls for association with 11 significant single nucleotide polymorphisms (SNPs) from published LOAD risk genome-wide association studies. RESULTS: There was highly significant association with APOE ε4 and increased risk of PCA (p = 0.0003, odds ratio [OR] = 3.17) and posterior AD (p = 1.11 × 10(-17), OR = 6.43). No other locus was significant after corrections for multiple testing, although rs11136000 near CLU (p = 0.019, OR = 0.60) and rs744373 near BIN1 (p = 0.025, OR = 1. 63) associated nominally significantly with posterior AD, and rs3851179 at the PICALM locus had significant association with PCA (p = 0.0003, OR = 2.84). ABCA7 locus SNP rs3764650, which was also tested under the recessive model because of Hardy-Weinberg disequilibrium, also had nominally significant association with PCA risk. The direction of association at APOE, CLU, and BIN1 loci was the same for participants with PCA and posterior AD. The effects for all SNPs, except rs3851179, were consistent with those for LOAD risk. CONCLUSIONS: We identified a significant effect for APOE and nominate CLU, BIN1, and ABCA7 as additional risk loci for PCA and posterior AD. Our findings suggest that at least some of the genetic risk factors for LOAD are shared with these atypical conditions and provide effect-size estimates for their future genetic studies.


Assuntos
Doença de Alzheimer/genética , Córtex Cerebral/patologia , Variação Genética/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Atrofia , Ventrículos Cerebrais/patologia , Comorbidade , Estudos Transversais , Feminino , Humanos , Masculino , Exame Neurológico , Testes Neuropsicológicos , Suécia , Tomografia Computadorizada por Raios X
10.
Alzheimers Dement ; 10(2): 205-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23643458

RESUMO

BACKGROUND: Genetic variants at the CLU, CR1, and PICALM loci associate with risk for late-onset Alzheimer's disease (LOAD) in genomewide association studies. In this study, our aim was to determine whether the LOAD risk variants at these three loci influence memory endophenotypes in black and white subjects. METHODS: We pursued an association study between single nucleotide polymorphism genotypes at the CLU, CR1, and PICALM loci and memory endophenotypes. We assessed black subjects (AA series: 44 with LOAD and 224 control subjects) recruited at Mayo Clinic Florida and whites recruited at Mayo Clinic Minnesota (RS series: 372 with LOAD and 1690 control subjects) and Florida (JS series: 60 with LOAD and 529 control subjects). Single nucleotide polymorphisms at the LOAD risk loci CLU (rs11136000), CR1 (rs6656401, rs3818361), and PICALM (rs3851179) were genotyped and tested for association with Logical Memory immediate recall, Logical Memory delayed recall, Logical Memory percent retention, Visual Reproduction immediate recall, Visual Reproduction delayed recall, and Visual Reproduction percent retention scores from the Wechsler Memory Scale-Revised using multivariable linear regression analysis, adjusting for age at exam, sex, education, and apolipoprotein E ε4 dosage. RESULTS: We identified nominally significant or suggestive associations between the LOAD-risky CR1 variants and worse Logical Memory immediate recall scores in blacks (P = .068-.046, ß = -2.7 to -1.2). The LOAD-protective CLU variant is associated with better logical memory endophenotypes in white subjects (P = .099-.027, ß = 0.31-0.93). The CR1 associations persisted when the control subjects from the AA series were assessed separately. The CLU associations appeared to be driven by one of the white series (RS) and were also observed when the control subset from RS was analyzed. CONCLUSION: These results suggest for the first time that LOAD risk variants at CR1 may influence memory endophenotypes in blacks. In addition, the CLU LOAD-protective variant may confer enhanced memory in whites. Although these results would not remain significant after stringent corrections for multiple testing, they need to be considered in the context of the LOAD associations with which they have biological consistency. They also provide estimates for effect sizes on memory endophenotypes that could guide future studies. The detection of memory effects for these variants in clinically normal subjects, implies that these LOAD risk loci might modify memory prior to clinical diagnosis of AD.


Assuntos
Doença de Alzheimer/genética , Clusterina/genética , Predisposição Genética para Doença/genética , Memória/fisiologia , Proteínas Monoméricas de Montagem de Clatrina/genética , Receptores de Complemento 3b/genética , Idoso , Idoso de 80 Anos ou mais , Apolipoproteína E4/genética , População Negra/genética , Endofenótipos , Feminino , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Escalas de Graduação Psiquiátrica , População Branca/genética
11.
PLoS One ; 8(5): e64802, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724096

RESUMO

GRB-associated binding protein 2 (GAB2) represents a compelling genome-wide association signal for late-onset Alzheimer's disease (LOAD) with reported odds ratios (ORs) ranging from 0.75-0.85. We tested eight GAB2 variants in four North American Caucasian case-control series (2,316 LOAD, 2,538 controls) for association with LOAD. Meta-analyses revealed ORs ranging from (0.61-1.20) with no significant association (all p>0.32). Four variants were hetergeneous across the populations (all p<0.02) due to a potentially inflated effect size (OR = 0.61-0.66) only observed in the smallest series (702 LOAD, 209 controls). Despite the lack of association in our series, the previously reported protective association for GAB2 remained after meta-analyses of our data with all available previously published series (11,952-22,253 samples; OR = 0.82-0.88; all p<0.04). Using a freely available database of lymphoblastoid cell lines we found that protective GAB2 variants were associated with increased GAB2 expression (p = 9.5×10(-7)-9.3×10(-6)). We next measured GAB2 mRNA levels in 249 brains and found that decreased neurofibrillary tangle (r = -0.34, p = 0.0006) and senile plaque counts (r = -0.32, p = 0.001) were both good predictors of increased GAB2 mRNA levels albeit that sex (r = -0.28, p = 0.005) may have been a contributing factor. In summary, we hypothesise that GAB2 variants that are protective against LOAD in some populations may act functionally to increase GAB2 mRNA levels (in lymphoblastoid cells) and that increased GAB2 mRNA levels are associated with significantly decreased LOAD pathology. These findings support the hypothesis that Gab2 may protect neurons against LOAD but due to significant population heterogeneity, it is still unclear whether this protection is detectable at the genetic level.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Lobo Temporal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Apolipoproteínas E/genética , Estudos de Casos e Controles , Linhagem Celular , Epistasia Genética , Feminino , Estudos de Associação Genética , Heterogeneidade Genética , Loci Gênicos/genética , Haplótipos/genética , Humanos , Masculino , Metanálise como Assunto , América do Norte , Mudanças Depois da Morte , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco , Lobo Temporal/patologia
13.
PLoS Genet ; 8(6): e1002707, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685416

RESUMO

Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n=197, temporal cortex n=202) and with other brain pathologies (non-AD, cerebellar n=177, temporal cortex n=197). We conducted an expression genome-wide association study (eGWAS) using 213,528 cisSNPs within ± 100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596 unique cisSNPs) significant in both ADs and non-ADs (q<0.05, p=7.70 × 10(-5)-1.67 × 10(-82)). Of these, 2,089 were also significant in the temporal cortex (p=1.85 × 10(-5)-1.70 × 10(-141)). The top cerebellar cisSNPs had 2.4-fold enrichment for human disease-associated variants (p<10(-6)). We identified novel cisSNP/transcript associations for human disease-associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson's disease (PD) MMRN1/rs6532197, Paget's disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there was 2.9-3.3 fold enrichment (p<10(-6)) of significant cisSNPs with suggestive AD-risk association (p<10(-3)) in the Alzheimer's Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for many central nervous system (CNS) and non-CNS diseases. Combined assessment of expression and disease GWAS may provide complementary information in discovery of human disease variants with functional implications. Our findings have implications for the design and interpretation of eGWAS in general and the use of brain expression quantitative trait loci in the study of human disease genetics.


Assuntos
Doença de Alzheimer/genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Lobo Temporal , Autopsia , Predisposição Genética para Doença , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , RNA/genética , Lobo Temporal/metabolismo
14.
Neurology ; 79(3): 221-8, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22722634

RESUMO

OBJECTIVE: Recent genome-wide association studies (GWAS) of late-onset Alzheimer disease (LOAD) identified 9 novel risk loci. Discovery of functional variants within genes at these loci is required to confirm their role in Alzheimer disease (AD). Single nucleotide polymorphisms that influence gene expression (eSNPs) constitute an important class of functional variants. We therefore investigated the influence of the novel LOAD risk loci on human brain gene expression. METHODS: We measured gene expression levels in the cerebellum and temporal cortex of autopsied AD subjects and those with other brain pathologies (∼400 total subjects). To determine whether any of the novel LOAD risk variants are eSNPs, we tested their cis-association with expression of 6 nearby LOAD candidate genes detectable in human brain (ABCA7, BIN1, CLU, MS4A4A, MS4A6A, PICALM) and an additional 13 genes ±100 kb of these SNPs. To identify additional eSNPs that influence brain gene expression levels of the novel candidate LOAD genes, we identified SNPs ±100 kb of their location and tested for cis-associations. RESULTS: CLU rs11136000 (p = 7.81 × 10(-4)) and MS4A4A rs2304933/rs2304935 (p = 1.48 × 10(-4)-1.86 × 10(-4)) significantly influence temporal cortex expression levels of these genes. The LOAD-protective CLU and risky MS4A4A locus alleles associate with higher brain levels of these genes. There are other cis-variants that significantly influence brain expression of CLU and ABCA7 (p = 4.01 × 10(-5)-9.09 × 10(-9)), some of which also associate with AD risk (p = 2.64 × 10(-2)-6.25 × 10(-5)). CONCLUSIONS: CLU and MS4A4A eSNPs may at least partly explain the LOAD risk association at these loci. CLU and ABCA7 may harbor additional strong eSNPs. These results have implications in the search for functional variants at the novel LOAD risk loci.


Assuntos
Doença de Alzheimer/genética , Química Encefálica/genética , Expressão Gênica/fisiologia , Idoso , Alelos , Apolipoproteína E4/genética , Autopsia , Feminino , Dosagem de Genes , Predisposição Genética para Doença , Genótipo , Humanos , Modelos Lineares , Masculino , Polimorfismo de Nucleotídeo Único , RNA/genética , RNA/isolamento & purificação , Fatores de Risco , Lobo Temporal/metabolismo
15.
Mol Neurodegener ; 7: 13, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22494505

RESUMO

BACKGROUND: Glutathione S-transferase omega-1 and 2 genes (GSTO1, GSTO2), residing within an Alzheimer and Parkinson disease (AD and PD) linkage region, have diverse functions including mitigation of oxidative stress and may underlie the pathophysiology of both diseases. GSTO polymorphisms were previously reported to associate with risk and age-at-onset of these diseases, although inconsistent follow-up study designs make interpretation of results difficult. We assessed two previously reported SNPs, GSTO1 rs4925 and GSTO2 rs156697, in AD (3,493 ADs vs. 4,617 controls) and PD (678 PDs vs. 712 controls) for association with disease risk (case-controls), age-at-diagnosis (cases) and brain gene expression levels (autopsied subjects). RESULTS: We found that rs156697 minor allele associates with significantly increased risk (odds ratio = 1.14, p = 0.038) in the older ADs with age-at-diagnosis > 80 years. The minor allele of GSTO1 rs4925 associates with decreased risk in familial PD (odds ratio = 0.78, p = 0.034). There was no other association with disease risk or age-at-diagnosis. The minor alleles of both GSTO SNPs associate with lower brain levels of GSTO2 (p = 4.7 × 10-11-1.9 × 10-27), but not GSTO1. Pathway analysis of significant genes in our brain expression GWAS, identified significant enrichment for glutathione metabolism genes (p = 0.003). CONCLUSION: These results suggest that GSTO locus variants may lower brain GSTO2 levels and consequently confer AD risk in older age. Other glutathione metabolism genes should be assessed for their effects on AD and other chronic, neurologic diseases.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Glutationa Transferase/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Alelos , Doença de Alzheimer/enzimologia , Seguimentos , Expressão Gênica , Humanos , Pessoa de Meia-Idade , Doença de Parkinson/enzimologia , Fatores de Risco
16.
Neurobiol Aging ; 33(1): 203.e25-33, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20864222

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) and its paralogs were implicated in late-onset Alzheimer's disease (LOAD), although the strength and direction of association have not been consistent. We genotyped 3 previously reported single nucleotide polymorphisms (SNPs; rs3741916-GAPDH 5' UTR, rs2029721-pGAPD, and rs4806173-GAPDHS) in 3 case-control series (2112 cases and 3808 controls). Rs3741916 showed the strongest LOAD association (p = 0.003). The minor allele of rs3741916 showed a protective effect in our combined series (odds ratio [OR] = 0.87%, 95% confidence interval [CI] = 0.79-0.96). This is consistent with results from the 2 published follow-up studies and in opposite direction of the original report. Meta-analysis of the published series with ours suggests presence of heterogeneity (Breslow-Day p < 0.0001). Meta-analysis of only the follow-up series including ours revealed a significant protective effect for the minor allele of rs3741916 (OR = 0.85%, 95% CI = 0.76-0.96, p = 0.009). Our results support the presence of LOAD variants and heterogeneity at the GAPDH locus. The most promising rs3741916 variant is unlikely to be functional given opposing effects in different series. Identification of functional variant(s) in this region likely awaits deep sequencing.


Assuntos
Doença de Alzheimer/genética , Estudos de Associação Genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Polimorfismo de Nucleotídeo Único , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade
17.
PLoS One ; 6(6): e21429, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731745

RESUMO

The insulin degrading enzyme (IDE) variant, v311 (rs6583817), is associated with increased post-mortem cerebellar IDE mRNA, decreased plasma ß-amyloid (Aß), decreased risk for Alzheimer's disease (AD) and increased reporter gene expression, suggesting that it is a functional variant driving increased IDE expression. To identify other functional IDE variants, we have tested v685, rs11187061 (associated with decreased cerebellar IDE mRNA) and variants on H6, the haplotype tagged by v311 (v10; rs4646958, v315; rs7895832, v687; rs17107734 and v154; rs4646957), for altered in vitro reporter gene expression. The reporter gene expression levels associated with the second most common haplotype (H2) successfully replicated the post-mortem findings in hepatocytoma (0.89 fold-change, p = 0.04) but not neuroblastoma cells. Successful in vitro replication was achieved for H6 in neuroblastoma cells when the sequence was cloned 5' to the promoter (1.18 fold-change, p = 0.006) and 3' to the reporter gene (1.29 fold change, p = 0.003), an effect contributed to by four variants (v10, v315, v154 and v311). Since IDE mediates Aß degradation, variants that regulate IDE expression could represent good therapeutic targets for AD.


Assuntos
Expressão Gênica , Genes Reporter/genética , Insulisina/genética , Polimorfismo de Nucleotídeo Único/genética , Sequência de Bases , Linhagem Celular Tumoral , Haplótipos/genética , Humanos , Luciferases/genética
18.
Mol Neurodegener ; 6(1): 54, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21798052

RESUMO

BACKGROUND: A recently published genome-wide association study (GWAS) of late-onset Alzheimer's disease (LOAD) revealed genome-wide significant association of variants in or near MS4A4A, CD2AP, EPHA1 and CD33. Meta-analyses of this and a previously published GWAS revealed significant association at ABCA7 and MS4A, independent evidence for association of CD2AP, CD33 and EPHA1 and an opposing yet significant association of a variant near ARID5B. In this study, we genotyped five variants (in or near CD2AP, EPHA1, ARID5B, and CD33) in a large (2,634 LOAD, 4,201 controls), independent dataset comprising six case-control series from the USA and Europe. We performed meta-analyses of the association of these variants with LOAD and tested for association using logistic regression adjusted by age-at-diagnosis, gender, and APOE ε4 dosage. RESULTS: We found no significant evidence of series heterogeneity. Associations with LOAD were successfully replicated for EPHA1 (rs11767557; OR = 0.87, p = 5 × 10-4) and CD33 (rs3865444; OR = 0.92, p = 0.049), with odds ratios comparable to those previously reported. Although the two ARID5B variants (rs2588969 and rs494288) showed significant association with LOAD in meta-analysis of our dataset (p = 0.046 and 0.008, respectively), the associations did not survive adjustment for covariates (p = 0.30 and 0.11, respectively). We had insufficient evidence in our data to support the association of the CD2AP variant (rs9349407, p = 0.56). CONCLUSIONS: Our data overwhelmingly support the association of EPHA1 and CD33 variants with LOAD risk: addition of our data to the results previously reported (total n > 42,000) increased the strength of evidence for these variants, providing impressive p-values of 2.1 × 10-15 (EPHA1) and 1.8 × 10-13 (CD33).

19.
J Alzheimers Dis ; 24(4): 751-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21321396

RESUMO

The most recent late-onset Alzheimer's disease (LOAD) genome-wide association study revealed genome-wide significant association of two new loci: rs744373 near BIN1 (p = 1.6 × 10-11) and rs597668 near EXOC3L2/BLOC1S3/MARK4 (p = 6.5 × 10-9). We have genotyped these variants in a large (3,287 LOAD, 4,396 controls), independent dataset comprising eleven case-control series from the USA and Europe. We performed meta-analyses of the association of these variants with LOAD and also tested for association using logistic regression adjusted by age-at-diagnosis, gender, and APOE ε4 status. Meta-analysis results showed no evidence of series heterogeneity and logistic regression analysis successfully replicated the association of BIN1 (rs744373) with LOAD with an odds ratio (OR = 1.17, p = 1.1 × 10-4) comparable to that previously reported (OR = 1.15). The variant near EXOC3L2 (rs597668) showed only suggestive association with LOAD (p = 0.09) after correcting for the presence of the APOE ε4 allele. Addition of our follow-up data to the results previously reported increased the strength of evidence for association with BIN1 (11,825 LOAD, 32,570 controls, rs744373 Fisher combined p = 3.8 × 10-20). We also tested for epistatic interaction between these variants and APOE ε4 as well as with the previously replicated LOAD GWAS genes (CLU: rs11136000, CR1: rs3818361, and PICALM: rs3851179). No significant interactions between these genes were detected. In summary, we provide additional evidence for the variant near BIN1 (rs744373) as a LOAD risk modifier, but our results indicate that the effect of EXOC3L2 independent of APOE ε4 should be studied further.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Doença de Alzheimer/diagnóstico , Estudos de Casos e Controles , Humanos , Modelos Logísticos , Razão de Chances
20.
Hum Genet ; 129(3): 273-82, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21132329

RESUMO

The 12 genome-wide association studies (GWAS) published to-date for late-onset Alzheimer's disease (LOAD) have identified over 40 candidate LOAD risk modifiers, in addition to apolipoprotein (APOE) ε4. A few of these novel LOAD candidate genes, namely BIN1, CLU, CR1, EXOC3L2 and PICALM, have shown consistent replication, and are thus credible LOAD susceptibility genes. To evaluate other promising LOAD candidate genes, we have added data from our large, case-control series (n=5,043) to meta-analyses of all published follow-up case-control association studies for six LOAD candidate genes that have shown significant association across multiple studies (TNK1, GAB2, LOC651924, GWA_14q32.13, PGBD1 and GALP) and for an additional nine previously suggested candidate genes. Meta-analyses remained significant at three loci after addition of our data: GAB2 (OR=0.78, p=0.007), LOC651924 (OR=0.91, p=0.01) and TNK1 (OR=0.92, p=0.02). Breslow-Day tests revealed significant heterogeneity between studies for GAB2 (p<0.0001) and GWA_14q32.13 (p=0.006). We have also provided suggestive evidence that PGBD1 (p=0.04) and EBF3 (p=0.03) are associated with age-at-onset of LOAD. Finally, we tested for interactions between these 15 genes, APOE ε4 and the five novel LOAD genes BIN1, CLU, CR1, EXOC3L2 and PICALM but none were significant after correction for multiple testing. Overall, this large, independent follow-up study for 15 of the top LOAD candidate genes provides support for GAB2 and LOC651924 (6q24.1) as risk modifiers of LOAD and novel associations between PGBD1 and EBF3 with age-at-onset.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Proteínas Adaptadoras de Transdução de Sinal/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...