Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arh Hig Rada Toksikol ; 74(1): 1-7, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014687

RESUMO

This review summarises current knowledge about the genotoxic and genoprotective effects of 1,4-dihydropyridines (DHP) with the main focus on the water-soluble 1,4-DHPs. Most of these water-soluble compounds manifest very low calcium channel blocking activity, which is considered "unusual" for 1,4-DHPs. Glutapyrone, diludine, and AV-153 decrease spontaneous mutagenesis and frequency of mutations induced by chemical mutagens. AV-153, glutapyrone, and carbatones protect DNA against the damage produced by hydrogen peroxide, radiation, and peroxynitrite. The ability of these molecules to bind to the DNA may not be the only mechanism of DNA protection, as other mechanisms such as radical scavenging or binding to other genotoxic compounds may take place and enhance DNA repair. These uncertainties and reports of high 1,4-DHP concentrations damaging the DNA call for further in vitro and in vivo preclinical research, pharmacokinetic in particular, as it can help pinpoint the exact mechanism(s) of the genotoxic and/or genoprotective action of 1,4-DHPs.


Assuntos
Bloqueadores dos Canais de Cálcio , Dano ao DNA , Bloqueadores dos Canais de Cálcio/farmacologia , Reparo do DNA
2.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34681211

RESUMO

The paradigm of ligand-receptor interactions postulated as "one compound-one target" has been evolving; a multi-target, pleiotropic approach is now considered to be realistic. Novel series of 1,4,5,6,7,8-hexahydro-5-oxoquinolines, pyranopyrimidines and S-alkyl derivatives of pyranopyrimidines have been synthesized in order to characterise their pleiotropic, multitarget activity on the FFA3/GPR41, FFA2/GPR43, and HCA2/GPR109A receptors. Hexahydroquinoline derivatives have been known to exhibit characteristic activity as FFA3/GPR41 ligands, but during this study we observed their impact on FFA2/GPR43 and HCA2/GPR109A receptors as well as their electron-donating activity. Oxopyranopyrimidine and thioxopyranopyrimidine type compounds have been studied as ligands of the HCA2/GPR109A receptor; nevertheless, they exhibited equal or higher activity towards FFA3/GPR41 and FFA2/GPR43 receptors. S-Alkyl derivatives of pyranopyrimidines that have not yet been studied as ligands of GPCRs were more active towards HCA2/GPR109A and FFA3/GPR41 receptors than towards FFA2/GPR43. Representative compounds from each synthesized series were able to decrease the lipopolysaccharide-induced gene expression and secretion of proinflammatory cytokines (IL-6, TNF-α) and of a chemokine (MCP-1) in THP-1 macrophages, resembling the effect of HCA2/GPR109A ligand niacin and the endogenous ligand propionate. This study revealed groups of compounds possessing multitarget activity towards several receptors. The obtained data could be useful for further development of multitarget ligands.

3.
Arh Hig Rada Toksikol ; 72(3): 148-156, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34187104

RESUMO

The ubiquitin-proteasome system modifies different cellular and protein functions. Its dysregulation may lead to disrupted proteostasis associated with multiple pathologies and aging. Pharmacological regulation of proteasome functions is already an important part of the treatment of several diseases. 1,4-dihydropyridine (1,4-DHP) derivatives possess different pharmacological activities, including antiaging and neuroprotective. The aim of this study was to investigate the effects of several 1,4-DHP derivatives on mRNA expression levels of proteasomal genes Psma3, Psmb5, and Psmc6 in several organs of rats. Rats were treated with metcarbatone, etcarbatone, glutapyrone, styrylcarbatone, AV-153-Na, or AV-153-Ca per os for three days. mRNA expression levels were determined with real-time polymerase chain reaction (PCR). For AV-153-Na and AV-153-Ca, we also determined the expression of the Psma6 gene. In the kidney, metcarbatone, etcarbatone, styrylcarbatone, and AV-153-Na increased the expression of all analysed genes. Glutapyrone increased the expression of Psmb5 and Psmc6 but did not affect the expression of Psma3. In the blood, glutapyrone increased Psmb5 expression. In the liver, AV-153-Na increased the expression of Psma6 and Psmc6 but lowered the expression of Psmb5, while AV-153-Ca only increased Psma6 expression. The ability of 1,4-DHP derivatives to increase the expression of proteasome subunit genes might hold a therapeutic potential in conditions associated with impaired proteasomal functions, but further research is needed.


Assuntos
Rim , Complexo de Endopeptidases do Proteassoma , Animais , Di-Hidropiridinas , Complexo de Endopeptidases do Proteassoma/genética , RNA Mensageiro/genética , Ratos
4.
Biomed Pharmacother ; 138: 111452, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33684691

RESUMO

Sirtuin 6 (SIRT6), a member of sirtuin family (SIRT1-7), regulates a variety of cellular processes involved in aging, metabolism, and cancer. Dysregulation of SIRT6 is widely observed in different breast cancer subtypes; however, the role and function of SIRT6 in cancer development remain largely unexplored. The aim of this study was to identify novel compounds targeting SIRT6 which may provide a new approach in development of anti-cancer therapy for breast cancer. Virtual screening was utilized to discover potential compounds targeting SIRT6 for in vitro screening. In addition, novel 1,4-dihydropyridine derivatives were synthetized and further subjected for the screening. The impact of the compounds on the deacetylation activity of SIRT6 was determined with HPLC method. The anti-cancer activities were screened for a panel of breast cancer cells. A set of 1,4-dihydropyridine derivatives was identified as SIRT6 inhibitors. A SIRT6 activating compound, (2,4-dihydroxy-phenyl)-2-oxoethyl 2-(3-methyl-4-oxo-2-phenyl-4H-chromen-8-yl)acetate (later called as 4H-chromen), was discovered and it provided 30-40-fold maximal activation. 4H-chromen was proposed to bind similarly to quercetin and place to previously reported SIRT6 activator sites. 4H-chromen was investigated in various breast cancer cells, and it decreased cell proliferation in all cells as well as arrested cell cycle in triple negative cells. Overall, this study describes a highly potent SIRT6 activator and new inhibitors that represent a novel tool to study the mechanism of SIRT6 function.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Sirtuínas/antagonistas & inibidores , Sirtuínas/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Simulação de Acoplamento Molecular/métodos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sirtuínas/química
5.
PeerJ ; 8: e10061, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240591

RESUMO

1,4-dihydropyridines (1,4-DHP) possess important biochemical and pharmacological properties, including antimutagenic and DNA-binding activity. The latter activity was first described for water-soluble 1,4-DHP with carboxylic group in position 4, the sodium salt of the 1,4-DHP derivative AV-153 among others. Some data show the modification of physicochemical properties and biological activities of organic compounds by metal ions that form the salts. We demonstrated the different affinity to DNA and DNA-protecting capacity of AV-153 salts, depending on the salt-forming ion (Na, K, Li, Rb, Ca, Mg). This study aimed to use different approaches to collate data on the DNA-binding mode of AV-153-Na and five other AV-153 salts. All the AV-153 salts in this study quenched the ethidium bromide and DNA complex fluorescence, which points to an intercalation binding mode. For some of them, the intercalation binding was confirmed using cyclic voltammetry and circular dichroism spectroscopy. It was shown that in vitro all AV-153 salts can interact with four DNA bases. The FTIR spectroscopy data showed the interaction of AV-153 salts with both DNA bases and phosphate groups. A preference for base interaction was observed as the AV-153 salts interacted mostly with G and C bases. However, the highest differences were detected in the spectral region assigned to phosphate groups, which might indicate either conformational changes of DNA molecule (B form to A or H form) or partial denaturation of the molecule. According to the UV/VIS spectroscopy data, the salts also interact with the human telomere repeat, both in guanine quadruplex (G4) and single-stranded form; Na and K salts manifested higher affinity to G4, Li and Rb -to single-stranded DNA.

6.
Oxid Med Cell Longev ; 2020: 2075815, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308799

RESUMO

A set of six new 4-pyridinio-1,4-dihydropyridine (1,4-DHP) compounds has been synthesized. The calcium channel modulating activity of these compounds was evaluated in an aorta vascular smooth muscle cell line (A7R5), in an isolated rat aortic ring model, and in human neuroblastoma cell lines (SH-SY5Y). The antagonistic effect of these 1,4-DHP was tested by modulating the impact of carbachol-dependent mobilization of intracellular Ca2+ in SH-SY5Y cells. The intracellular free Ca2+ concentration was measured in confluent monolayers of SH-SY5Y cells and A7R5 cells with the Ca2+-sensitive fluorescent indicator Fluo-4 NW. Only four compounds showed calcium channel blocking activity in SH-SY5Y and A7R5 cells as well as in the aortic ring model. Among them, compound 3 was the most active calcium channel antagonist, which had 3 times higher activity on carbachol-activated SH-SY5Y cells than amlodipine. Two of the compounds were inactive. Compound 4 had 9 times higher calcium agonist activity than the classic DHP calcium agonist Bay K8644. The intracellular mechanism for the action of compound 4 using inhibitor analysis was elucidated. Nicotinic as well as muscarinic receptors were not involved. Sarcoplasmic reticulum (ER) Ca2+ (SERCA) stores were not affected. Ryanodine receptors (RyRs), another class of intracellular Ca2+ releasing channels, participated in the agonist response evoked by compound 4. The electrooxidation data suggest that the studied compounds could serve as antioxidants in OS.


Assuntos
Cálcio/metabolismo , Di-Hidropiridinas/uso terapêutico , Transporte de Íons/efeitos dos fármacos , Animais , Di-Hidropiridinas/farmacologia , Humanos , Ratos , Células Tumorais Cultivadas
7.
Artigo em Inglês | MEDLINE | ID: mdl-31561891

RESUMO

1,4-Dihydropyridines (1,4-DHP) possess important biochemical and pharmacological properties, including antioxidant and antimutagenic activities. AV-153-Na, an antimutagenic and DNA-repair enhancing compound was shown to interact with DNA by intercalation. Here we studied DNA binding of several AV-153 salts to evaluate the impact of AV-153 modifications on its DNA binding capacity, the ability to scavenge the peroxynitrite, to protect HeLa and B-cells cells against DNA damage. Affinity of the AV-153 salts to DNA measured by a fluorescence assay was dependent on the metal ion forming a salt in position 4 of the 1,4-DHP, and it decreased as follows: Mg > Na > Ca > Li > Rb > K. AV-153-K and AV-153-Rb could not react chemically with peroxynitrite as opposed to AV-153-Mg and AV-153-Ca, the latter increased the decomposition rate of peroxynitrite. AV-153-Na and AV-153-Ca effectively reduced DNA damage induced by peroxynitrite in HeLa cells, while AV-153-K and AV-153-Rb were less effective, AV-153-Li did not protect the DNA, and AV-153-Mg even caused DNA damage itself. The Na, K, Ca and Mg AV-153 salts were also shown to reduce the level of DNA damage in human B-cells from healthy donors. Thus, metal ions modify both DNA-binding and DNA-protecting effects of the AV-153 salts.


Assuntos
Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Di-Hidropiridinas/farmacologia , Substâncias Intercalantes/farmacologia , Metais/farmacologia , Niacina/análogos & derivados , Antioxidantes/toxicidade , Linfócitos B/efeitos dos fármacos , Ensaio Cometa , Quebras de DNA de Cadeia Simples , Reparo do DNA , Di-Hidropiridinas/toxicidade , Interações Medicamentosas , Células HeLa , Humanos , Substâncias Intercalantes/toxicidade , Niacina/farmacologia , Niacina/toxicidade , Estresse Oxidativo , Ácido Peroxinitroso/toxicidade , Proteínas Recombinantes/farmacologia , Análise de Célula Única , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia
8.
J Neurosci Res ; 97(6): 708-726, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742328

RESUMO

Neuroinflammation, oxidative stress, decreased glucose/energy metabolism, and disrupted neurotransmission are changes that occur early in sporadic Alzheimer's disease (AD), manifesting as mild cognitive impairment. Recently, the imbalanced function of the gamma-aminobutyric acid (GABA) system was identified as a critical factor in AD progression. Thus, maintaining balance among neurotransmitter systems, particularly the GABA system, can be considered a beneficial strategy to slow AD progression. The present study investigated the effects of the compound gammapyrone, a molecule containing three GABA moieties: "free" moiety attached to the position 4 of the 1,4-dihydropyridine (DHP) ring, and two "crypto" moieties as part of the DHP scaffold. The "free" and "crypto" GABA moieties are linked by a peptide bond (-CONH-), resulting in a peptide-mimicking structure. In a nontransgenic male rat AD model generated by intracerebroventricular (icv) streptozocin (STZ) administration, gammapyrone (0.1 and 0.5 mg/kg ip) mitigated the impairment of spatial learning and memory, prevented astroglial and microglial neuroinflammation, and normalized acetylcholine breakdown and GABA biosynthesis. In PC12 cells, gammapyrone protected against oxidative stress, mitochondrial dysfunction and apoptosis caused by the mitochondrial toxin di-2-ethylhexyl phthalate (DEHP). Gammapyrone did not bind to GABA-A and GABA-B receptors in vitro; therefore, we cannot attribute its neuroprotective action to a specific interaction with GABA receptors. Nevertheless, we suggest that the peptide-like regulatory mechanisms of gammapyrone or its allosteric modulatory properties are essential for the observed effects. Since, the icv STZ model resembles the early stages of AD, gammapyrone, and/or its congeners could be useful in the design of anti-dementia drugs.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/metabolismo , Acetilcolinesterase/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Encefalite/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Microglia/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos Wistar , Receptores de GABA/metabolismo , Ácido gama-Aminobutírico/administração & dosagem
9.
Sci Rep ; 9(1): 684, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679627

RESUMO

Biosynthesis of hydrogen sulfide (H2S), a key signalling molecule in human (patho)physiology, is mostly accomplished by the human enzymes cystathionine ß-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MST). Several lines of evidence have shown a close correlation between increased H2S production and human diseases, such as several cancer types and amyotrophic lateral sclerosis. Identifying compounds selectively and potently inhibiting the human H2S-synthesizing enzymes may therefore prove beneficial for pharmacological applications. Here, the human enzymes CBS, CSE and MST were expressed and purified from Escherichia coli, and thirty-one pyridine derivatives were synthesized and screened for their ability to bind and inhibit these enzymes. Using differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), circular dichroism spectropolarimetry (CD), and activity assays based on fluorimetric and colorimetric H2S detection, two compounds (C30 and C31) sharing structural similarities were found to weakly inhibit both CBS and CSE: 1 mM C30 inhibited these enzymes by approx. 50% and 40%, respectively, while 0.5 mM C31 accounted for CBS and CSE inhibition by approx. 40% and 60%, respectively. This work, while presenting a robust methodological platform for screening putative inhibitors of the human H2S-synthesizing enzymes, highlights the importance of employing complementary methodologies in compound screenings.


Assuntos
Cistationina beta-Sintase/antagonistas & inibidores , Cistationina gama-Liase/antagonistas & inibidores , Sulfeto de Hidrogênio/metabolismo , Piridinas/farmacologia , Sulfurtransferases/antagonistas & inibidores , Dicroísmo Circular , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fluorometria/métodos , Humanos , Azul de Metileno , Piridinas/química , Sulfurtransferases/metabolismo , Ressonância de Plasmônio de Superfície
10.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 11): 1577-1579, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30443384

RESUMO

In the title compound, C25H25NO5S, which exhibits metabolism-regulating activity, the 1,4-di-hydro-pyridine ring adopts a flattened boat conformation while the cyclo-hexenone ring is in an envelope conformation. Mol-ecules in the crystal are assembled into C(6) chains along the a-axis direction via N-H⋯O hydrogen bonds. The thienyl fragment is disordered over two sets of sites in a 0.7220 (19):0.2780 (19) ratio.

11.
Antioxidants (Basel) ; 7(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235855

RESUMO

Oxidative stress has been implicated in pathophysiology of different human stress- and age-associated disorders, including osteoporosis for which antioxidants could be considered as therapeutic remedies as was suggested recently. The 1,4-dihydropyridine (DHP) derivatives are known for their pleiotropic activity, with some also acting as antioxidants. To find compounds with potential antioxidative activity, a group of 27 structurally diverse DHPs, as well as one pyridine compound, were studied. A group of 11 DHPs with 10-fold higher antioxidative potential than of uric acid, were further tested in cell model of human osteoblast-like cells. Short-term combined effects of DHPs and 50 µM H2O2 (1-h each), revealed better antioxidative potential of DHPs if administered before a stressor. Indirect 24-h effect of DHPs was evaluated in cells further exposed to mild oxidative stress conditions induced either by H2O2 or tert-butyl hydroperoxide (both 50 µM). Cell growth (viability and proliferation), generation of ROS and intracellular glutathione concentration were evaluated. The promotion of cell growth was highly dependent on the concentrations of DHPs used, type of stressor applied and treatment set-up. Thiocarbatone III-1, E2-134-1 III-4, Carbatone II-1, AV-153 IV-1, and Diethone I could be considered as therapeutic agents for osteoporosis although further research is needed to elucidate their bioactivity mechanisms, in particular in respect to signaling pathways involving 4-hydroxynoneal and related second messengers of free radicals.

12.
Arh Hig Rada Toksikol ; 68(3): 212-227, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28976888

RESUMO

Studies on the pathogenesis of diabetes mellitus complications indicate that the compounds reducing free radicals and enhancing DNA repair could be prospective as possible remedies. Carbatonides, the disodium-2,6-dimethyl-1,4- dihydropyridine-3,5-bis(carbonyloxyacetate) derivatives, were tested for these properties. EPR spectroscopy showed that metcarbatone was an effective scavenger of hydroxyl radicals produced in the Fenton reaction, etcarbatone, and propcarbatone were less effective, styrylcarbatone was ineffective. UV/VIS spectroscopy revealed that styrylcarbatone manifested a hyperchromic effect when interacting with DNA, while all other carbatonides showeda hypochromic effect. Rats with streptozotocin induced type 1 DM were treated with metcarbatone, etcarbatone or styrylcarbatone (all compounds at doses 0.05 mg kg-1 or 0.5 mg kg-1) nine days after the DM approval. Gene expression levels in kidneys and blood were evaluated by quantitative RT-PCR; protein expression - immunohistochemically in kidneys, heart, sciatic nerve, and eyes; DNA breakage - by comet assay in nucleated blood cells. Induction of DM induced DNA breaks; metcarbatone and styrylcarbatone (low dose) alleviated this effect. Metcarbatone and etcarbatone up-regulated mRNA and protein of eNOS in kidneys of diabetic animals; etcarbatone also in myocardium. Etcarbatone reduced the expression of increased iNOS protein in myocardium, nerve, and kidneys. iNos gene expression was up-regulated in kidneys by etcarbatone and metcarbatone in diabetic animals. In blood, development of DM increased iNos gene expression; etcarbatone and metcarbatone normalised it. Etcarbatone up-regulated the expression of H2AX in kidneys of diabetic animals but decreased the production of c-PARP1. Taken together, our data indicate that carbatonides might have a potential as drugs intended to treat DM complications.


Assuntos
Reparo do DNA/efeitos dos fármacos , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/complicações , Di-Hidropiridinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Óxido Nítrico/metabolismo , Animais , Masculino , Estudos Prospectivos , Ratos
13.
Oxid Med Cell Longev ; 2017: 4069839, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473879

RESUMO

The effects of eleven 1,4-dihydropyridine derivatives (DHPs) used alone or together with prooxidant anticancer drug doxorubicin were examined on two cancer (HOS, HeLa) and two nonmalignant cell lines (HMEC, L929). Their effects on the cell growth (3H-thymidine incorporation) were compared with their antiradical activities (DPPH assay), using well-known DHP antioxidant diludine as a reference. Thus, tested DHPs belong to three groups: (1) antioxidant diludine; (2) derivatives with pyridinium moieties at position 4 of the 1,4-DHP ring; (3) DHPs containing cationic methylene onium (pyridinium, trialkylammonium) moieties at positions 2 and 6 of the 1,4-DHP ring. Diludine and DHPs of group 3 exerted antiradical activities, unlike compounds of group 2. However, novel DHPs had cell type and concentration dependent effects on 3H-thymidine incorporation, while diludine did not. Hence, IB-32 (group 2) suppressed the growth of HOS and HeLa, enhancing growth of L929 cells, while K-2-11 (group 3) enhanced growth of every cell line tested, even in the presence of doxorubicin. Therefore, growth regulating and antiradical activity principles of novel DHPs should be further studied to find if DHPs of group 2 could selectively suppress cancer growth and if those of group 3 promote wound healing.


Assuntos
Di-Hidropiridinas , Doxorrubicina/farmacologia , Sequestradores de Radicais Livres , Neoplasias/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Di-Hidropiridinas/química , Di-Hidropiridinas/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Células HeLa , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Ratos
14.
Oxid Med Cell Longev ; 2016: 1892412, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881016

RESUMO

Many 1,4-dihydropyridines (DHPs) possess redox properties. In this review DHPs are surveyed as protectors against oxidative stress (OS) and related disorders, considering the DHPs as specific group of potential antioxidants with bioprotective capacities. They have several peculiarities related to antioxidant activity (AOA). Several commercially available calcium antagonist, 1,4-DHP drugs, their metabolites, and calcium agonists were shown to express AOA. Synthesis, hydrogen donor properties, AOA, and methods and approaches used to reveal biological activities of various groups of 1,4-DHPs are presented. Examples of DHPs antioxidant activities and protective effects of DHPs against OS induced damage in low density lipoproteins (LDL), mitochondria, microsomes, isolated cells, and cell cultures are highlighted. Comparison of the AOA of different DHPs and other antioxidants is also given. According to the data presented, the DHPs might be considered as bellwether among synthetic compounds targeting OS and potential pharmacological model compounds targeting oxidative stress important for medicinal chemistry.


Assuntos
Antioxidantes/metabolismo , Di-Hidropiridinas/química , Niacinamida/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Anlodipino/química , Animais , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/química , Bloqueadores dos Canais de Cálcio/química , Bovinos , Células Epiteliais/citologia , Humanos , Hidrogênio/química , Lipoproteínas LDL/química , Camundongos , Microssomos/metabolismo , Mitocôndrias/metabolismo , Niacinamida/química , Nifedipino/química , Nitrobenzenos , Oxidantes/química , Piperazinas
15.
Cell Biochem Funct ; 34(1): 3-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26634809

RESUMO

Impaired degradation of proteins by the ubiquitin-proteasome system (UPS) is observed in numerous pathologies including diabetes mellitus (DM) and its complications. Dysregulation of proteasomal degradation might be because of altered expression of genes and proteins involved in the UPS. The search for novel compounds able to normalize expression of the UPS appears to be a topical problem. A novel group of 1,4-dihydropyridine (1,4-DHP) derivatives lacking Ca2+-antagonists activities, but capable to produce antidiabetic, antioxidant and DNA repair enhancing effects, were tested for ability to modify Psma6 mRNA expression levels in rat kidneys and blood in healthy animals and in rats with streptozotocin (STZ) induced DM. Psma6 gene was chosen for the study, as polymorphisms of its human analogue are associated with DM and cardiovascular diseases. 1,4-DHP derivatives (metcarbatone, etcarbatone, glutapyrone, J-9-125 and AV-153-Na) were administered per os for three days (0.05 mg/kg and/or 0.5 mg/kg). Psma6 gene expression levels were evaluated by quantitative PCR. Psma6 expression was higher in kidneys compared to blood. Induction of diabetes caused increase of Psma6 expression in kidneys, although it was not changed in blood. Several 1,4-DHP derivatives increased expression of the gene both in kidneys and blood of control and model animals, but greater impact was observed in kidneys. The observed effect might reflect coupling of antioxidant and proteolysis-promoting activities of the compounds.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Di-Hidropiridinas/administração & dosagem , Rim/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Rim/efeitos dos fármacos , Masculino , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Regulação para Cima/efeitos dos fármacos
16.
Molecules ; 20(11): 20341-54, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26569215

RESUMO

The ethoxycarbonylmethyl esters of 1,4-dihydropyridines were directly converted into carbamoylmethyl esters in the presence of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) in good to excellent yields under mild conditions. The use of TBD is crucial for the successful aminolysis of ethoxycarbonylmethyl ester of 1,4-dihydropyridines with secondary amines as without it the reaction does not proceed at all. The aminolysis reaction proceeded regioselectively, as the alkyl ester conjugated with the 1,4-dihydropyridine cycle was not involved in the reaction. Screening of other N-containing bases, such as triethylamine (TEA), pyridine, 4-(N,N-dimethylamino)pyridine (DMAP), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), imidazole, tetramethyl guanidine (TMG) and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) as catalysts revealed no activity in the studied reaction.


Assuntos
Aminas/química , Ácidos Carboxílicos/química , Di-Hidropiridinas/química , Catálise , Di-Hidropiridinas/síntese química , Ésteres , Solventes/química
17.
Coll Antropol ; 35(1): 137-41, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21661362

RESUMO

Reactive oxygen species and lipid peroxidation products are not only cytotoxic but may also modulate signal transduction in cells. Accordingly, antioxidants may be considered as modifiers of cellular redox signaling. Therefore, the effects of two novel synthetic antioxidants, analogues of 1,4-dihydropyridine derivatives, cerebrocrast and Z41-74 were analysed in vitro on human osteosarcoma cell line HOS, the growth of which can be modulated by lipid peroxidation. The cells were pretreated with either cerebrocrast or Z41-74 and afterwards exposed to mild, copper induced lipid peroxidation or to 4-hydroxynonenal (HNE), the end product of lipid peroxidation. The results obtained have shown that both antioxidants exert growth modulating effects interfering with the lipid peroxidation. Namely, cells treated with antioxidants showed increased metabolic rate and cell growth, thereby attenuating the effects of lipid peroxidation. Such biomodulating effects of cerebrocrast and Z41-74 resembled growth modulating effects of HNE, suggesting that the antioxidants could eventually promote cellular adaptation to oxidative stress interacting with redox signaling and hydroxynonenal HNE-signal transduction pathways. This may be of particular relevance for better understanding the beneficial role of hydroxynonenal HNE in cell growth control. Therefore, cerebrocrast and Z41-74 could be convenient to study further oxidative homeostasis involving lipid peroxidation.


Assuntos
Antioxidantes/farmacologia , Di-Hidropiridinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Aldeídos/farmacologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sulfato de Cobre/farmacologia , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
18.
Cell Biochem Funct ; 22(4): 219-24, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15248181

RESUMO

Analysis of the effect of several 1,4-DHP Ca(2+) channel antagonists on experimental and clinical diabetes shows that structurally similar Ca(2+) channel antagonists can exert opposite effects on Ca(2+) influx, glucose homeostasis and insulin secretion. The influence of the Ca(2+) channel antagonists on pancreatic beta cell functions is dependent on lipophilicity, interactions with the cell membrane lipid bilayer, with SNAREs protein complexes in cell and vesicle membranes, with intracellular receptors, bioavailability and time of elimination from several organs and the bloodstream. In the present work we studied the effect at several doses of new compounds synthesized in the Latvian Institute of Organic Synthesis on blood glucose levels in normal and STZ-induced diabetic rats. The compounds tested were: 1,4-DHP derivatives cerebrocrast (1), etaftoron (2), OSI-1190 (3), OSI-3802 (4), OSI-2954 (5) and known 1,4-DHP derivatives: niludipine (6), nimodipine (7) and nicardipine (8) which possess different lipophilicities. Analysis of the structure-function relationships of the effect of 1,4-DHP derivatives on glucose metabolism showed that cerebrocrast could evoke qualitative differences in activity. Insertion of an OCHF(2) group in position 2 of the 4-phenylsubstituent and propoxyethylgroup R in ester moieties in positions 3 and 5 of the DHP structure, as well as an increase in the number of carbon atoms in the ester moiety, significantly modified the properties of the compound. Thereby cerebrocrast acquired high lipophilicity and membranotropic properties. Cerebrocrast, in a single administration at low doses (0.05 and 0.5 mg x kg(-1), p.o.), significantly decreased the plasma level of glucose in normal rats and in STZ-induced diabetic rats returned plasma glucose to basal levels. This effect was characterized by a slow onset and a powerful long-lasting influence on glucose metabolism, especially in STZ-induced diabetic rats.


Assuntos
Glicemia/análise , Bloqueadores dos Canais de Cálcio/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Di-Hidropiridinas/farmacologia , Hipoglicemiantes/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Diabetes Mellitus Experimental/sangue , Di-Hidropiridinas/química , Di-Hidropiridinas/uso terapêutico , Di-Hidropiridinas/toxicidade , Avaliação Pré-Clínica de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Hipoglicemiantes/uso terapêutico , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Nifedipino/análogos & derivados , Nifedipino/farmacologia , Ratos , Proteínas SNARE/fisiologia , Estreptozocina , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...