Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 69(11): 1262-1272, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33084564

RESUMO

Introduction. The rise of carbapenem-resistant enterobacteriaceae (CRE) is a growing crisis that requires development of novel therapeutics.Hypothesis. To this end, cationic antimicrobial peptides (CAMPs) represent a possible source of new potential therapeutics to treat difficult pathogens such as carbapenem-resistant Klebsiella pneumoniae (CRKP), which has gained resistance to many if not all currently approved antibiotics, making treatment difficult.Aim. To examine the anti-CRKP antimicrobial activity of the predicted cathelicidins derived from Varanus komodoensis (Komodo dragon) as well as synthetic antimicrobial peptides that we created.Methodology. We determined the minimum inhibitory concentrations of the peptides against CRKP. We also characterized the abilities of these peptides to disrupt the hyperpolarization of the bacterial membrane as well as their ability to form pores in the membrane.Results. We did not observe significant anti-CRKP activity for the predicted native Komodo cathelicidin peptides. We found that the novel peptides DRGN-6,-7 and -8 displayed significant antimicrobial activity against CRKP with MICs of 4-8 µg ml-1. DRGN-6 peptide was the most effective peptide against CRKP. Unfortunately, these peptides showed higher than desired levels of hemolysis, although in vivo testing in the waxworm Galleria mellonella showed no mortality associated with treatment by the peptide; however, CRKP-infected waxworms treated with peptide did not show an improvement in survival.Conclusion. Given the challenges of treating CRKP, identification of peptides with activity against it represents a promising avenue for further research. Given DRGN-6's similar level of activity to colistin, DRGN-6 is a promising template for the development of novel antimicrobial peptide-based therapeutics.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Lagartos , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Carbapenêmicos/farmacologia , Colistina/farmacologia , Infecções por Klebsiella , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Catelicidinas
2.
BMC Genomics ; 20(1): 684, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470795

RESUMO

BACKGROUND: We report the sequencing, assembly and analysis of the genome of the Komodo dragon (Varanus komodoensis), the largest extant lizard, with a focus on antimicrobial host-defense peptides. The Komodo dragon diet includes carrion, and a complex milieu of bacteria, including potentially pathogenic strains, has been detected in the saliva of wild dragons. They appear to be unaffected, suggesting that dragons have robust defenses against infection. While little information is available regarding the molecular biology of reptile immunity, it is believed that innate immunity, which employs antimicrobial host-defense peptides including defensins and cathelicidins, plays a more prominent role in reptile immunity than it does in mammals. . RESULTS: High molecular weight genomic DNA was extracted from Komodo dragon blood cells. Subsequent sequencing and assembly of the genome from the collected DNA yielded a genome size of 1.6 Gb with 45x coverage, and the identification of 17,213 predicted genes. Through further analyses of the genome, we identified genes and gene-clusters corresponding to antimicrobial host-defense peptide genes. Multiple ß-defensin-related gene clusters were identified, as well as a cluster of potential Komodo dragon ovodefensin genes located in close proximity to a cluster of Komodo dragon ß-defensin genes. In addition to these defensins, multiple cathelicidin-like genes were also identified in the genome. Overall, 66 ß-defensin genes, six ovodefensin genes and three cathelicidin genes were identified in the Komodo dragon genome. CONCLUSIONS: Genes with important roles in host-defense and innate immunity were identified in this newly sequenced Komodo dragon genome, suggesting that these organisms have a robust innate immune system. Specifically, multiple Komodo antimicrobial peptide genes were identified. Importantly, many of the antimicrobial peptide genes were found in gene clusters. We found that these innate immunity genes are conserved among reptiles, and the organization is similar to that seen in other avian and reptilian species. Having the genome of this important squamate will allow researchers to learn more about reptilian gene families and will be a valuable resource for researchers studying the evolution and biology of the endangered Komodo dragon.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Imunidade Inata/genética , Lagartos/genética , beta-Defensinas/genética , Animais , Peptídeos Catiônicos Antimicrobianos/sangue , Peptídeos Catiônicos Antimicrobianos/química , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Lagartos/sangue , Lagartos/imunologia , Família Multigênica , beta-Defensinas/sangue , beta-Defensinas/química , Catelicidinas
3.
Artigo em Inglês | MEDLINE | ID: mdl-28649410

RESUMO

Cationic antimicrobial peptides are multifunctional molecules that have a high potential as therapeutic agents. We have identified a histone H1-derived peptide from the Komodo dragon (Varanus komodoensis), called VK25. Using this peptide as inspiration, we designed a synthetic peptide called DRGN-1. We evaluated the antimicrobial and anti-biofilm activity of both peptides against Pseudomonas aeruginosa and Staphylococcus aureus. DRGN-1, more than VK25, exhibited potent antimicrobial and anti-biofilm activity, and permeabilized bacterial membranes. Wound healing was significantly enhanced by DRGN-1 in both uninfected and mixed biofilm (Pseudomonas aeruginosa and Staphylococcus aureus)-infected murine wounds. In a scratch wound closure assay used to elucidate the wound healing mechanism, the peptide promoted the migration of HEKa keratinocyte cells, which was inhibited by mitomycin C (proliferation inhibitor) and AG1478 (epidermal growth factor receptor inhibitor). DRGN-1 also activated the EGFR-STAT1/3 pathway. Thus, DRGN-1 is a candidate for use as a topical wound treatment. Wound infections are a major concern; made increasingly complicated by the emerging, rapid spread of bacterial resistance. The novel synthetic peptide DRGN-1 (inspired by a peptide identified from Komodo dragon) exhibits pathogen-directed and host-directed activities in promoting the clearance and healing of polymicrobial (Pseudomonas aeruginosa & Staphylococcus aureus) biofilm infected wounds. The effectiveness of this peptide cannot be attributed solely to its ability to act upon the bacteria and disrupt the biofilm, but also reflects the peptide's ability to promsote keratinocyte migration. When applied in a murine model, infected wounds treated with DRGN-1 healed significantly faster than did untreated wounds, or wounds treated with other peptides. The host-directed mechanism of action was determined to be via the EGFR-STAT1/3 pathway. The pathogen-directed mechanism of action was determined to be via anti-biofilm activity and antibacterial activity through membrane permeabilization. This novel peptide may have potential as a future therapeutic for treating infected wounds.

4.
J Immunol ; 198(7): 2957-2966, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28242650

RESUMO

The purple sea urchin, Strongylocentrotus purpuratus, expresses a diverse immune response protein family called Sp185/333. A recombinant Sp185/333 protein, previously called rSp0032, shows multitasking antipathogen binding ability, suggesting that the protein family mediates a flexible and effective immune response to multiple foreign cells. Bioinformatic analysis predicts that rSp0032 is intrinsically disordered, and its multiple binding characteristic suggests structural flexibility to adopt different conformations depending on the characteristics of the target. To address the flexibility and structural shifting hypothesis, circular dichroism analysis of rSp0032 suggests that it transforms from disordered (random coil) to α helical structure. This structural transformation may be the basis for the strong affinity between rSp0032 and several pathogen-associated molecular patterns. The N-terminal Gly-rich fragment of rSp0032 and the C-terminal His-rich fragment show unique transformations by either intensifying the α helical structure or changing from α helical to ß strand depending on the solvents and molecules added to the buffer. Based on these results, we propose a name change from rSp0032 to rSpTransformer-E1 to represent its flexible structural conformations and its E1 element pattern. Given that rSpTransformer-E1 shifts its conformation in the presence of solvents and binding targets and that all Sp185/333 proteins are predicted to be disordered, many or all of these proteins may undergo structural transformation to enable multitasking binding activity toward a wide range of targets. Consequently, we also propose an overarching name change for the entire family from Sp185/333 proteins to SpTransformer proteins.


Assuntos
Imunidade Inata/imunologia , Strongylocentrotus purpuratus/imunologia , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Biologia Computacional , Variação Genética , Fragmentos de Peptídeos/imunologia , Proteínas/imunologia
5.
J Proteome Res ; 16(4): 1470-1482, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28164707

RESUMO

Komodo dragons are the largest living lizards and are the apex predators in their environs. They endure numerous strains of pathogenic bacteria in their saliva and recover from wounds inflicted by other dragons, reflecting the inherent robustness of their innate immune defense. We have employed a custom bioprospecting approach combining partial de novo peptide sequencing with transcriptome assembly to identify cationic antimicrobial peptides from Komodo dragon plasma. Through these analyses, we identified 48 novel potential cationic antimicrobial peptides. All but one of the identified peptides were derived from histone proteins. The antimicrobial effectiveness of eight of these peptides was evaluated against Pseudomonas aeruginosa (ATCC 9027) and Staphylococcus aureus (ATCC 25923), with seven peptides exhibiting antimicrobial activity against both microbes and one only showing significant potency against P. aeruginosa. This study demonstrates the power and promise of our bioprospecting approach to cationic antimicrobial peptide discovery, and it reveals the presence of a plethora of novel histone-derived antimicrobial peptides in the plasma of the Komodo dragon. These findings may have broader implications regarding the role that intact histones and histone-derived peptides play in defending the host from infection. Data are available via ProteomeXChange with identifier PXD005043.


Assuntos
Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Lagartos/sangue , Transcriptoma/genética , Animais , Peptídeos Catiônicos Antimicrobianos/sangue , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Humanos , Espectrometria de Massas , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Saliva/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
6.
J Proteome Res ; 14(10): 4282-95, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26327436

RESUMO

The identification and sequencing of novel cationic antimicrobial peptides (CAMPs) have proven challenging due to the limitations associated with traditional proteomics methods and difficulties sequencing peptides present in complex biomolecular mixtures. We present here a process for large-scale identification and de novo-assisted sequencing of newly discovered CAMPs using microparticle capture followed by tandem mass spectrometry equipped with electron-transfer dissociation (ETD). This process was initially evaluated and verified using known CAMPs with varying physicochemical properties. The effective parameters were then applied in the analysis of a complex mixture of peptides harvested from American alligator plasma using custom-made (Bioprospector) functionalized hydrogel particles. Here, we report the successful sequencing process for CAMPs that has led to the identification of 340 unique peptides and the discovery of five novel CAMPs from American alligator plasma.


Assuntos
Jacarés e Crocodilos/sangue , Peptídeos Catiônicos Antimicrobianos/sangue , Proteínas Sanguíneas/isolamento & purificação , Descoberta de Drogas , Elétrons , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Proteínas Sanguíneas/química , Proteínas Sanguíneas/farmacologia , Cromatografia Líquida , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Hidrogéis , Testes de Sensibilidade Microbiana , Anotação de Sequência Molecular , Dados de Sequência Molecular , Tamanho da Partícula , Proteômica/instrumentação , Proteômica/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Análise de Sequência de Proteína/métodos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
7.
Biochim Biophys Acta ; 1848(5): 1081-91, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25660753

RESUMO

Cationic antimicrobial peptides (CAMPs) are important elements of innate immunity in higher organisms, representing an ancient defense mechanism against pathogenic bacteria. These peptides exhibit broad-spectrum antimicrobial activities, utilizing mechanisms that involve targeting bacterial membranes. Recently, a 34-residue CAMP (NA-CATH) was identified in cDNA from the venom gland of the Chinese cobra (Naja atra). A semi-conserved 11-residue pattern observed in the NA-CATH sequence provided the basis for generating an 11-residue truncated peptide, ATRA-1A, and its corresponding D-peptide isomer. While the antimicrobial and biophysical properties of the ATRA-1A stereoisomers have been investigated, their modes of action remain unclear. More broadly, mechanistic differences that can arise when investigating minimal antimicrobial units within larger naturally occurring CAMPs have not been rigorously explored. Therefore, the studies reported here are focused on this question and the interactions of full-length NA-CATH and the truncated ATRA-1A isomers with bacterial membranes. The results of these studies indicate that in engineering the ATRA-1A isomers, the associated change in peptide length and charge dramatically impacts not only their antimicrobial effectiveness, but also the mechanism of action they employ relative to that of the full-length parent peptide NA-CATH. These insights are relevant to future efforts to develop shorter versions of larger naturally occurring CAMPs for potential therapeutic applications.


Assuntos
Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Catelicidinas/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bacillus cereus/metabolismo , Bacillus cereus/ultraestrutura , Catelicidinas/química , Catelicidinas/isolamento & purificação , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Relação Dose-Resposta a Droga , Venenos Elapídicos/química , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Cinética , Viabilidade Microbiana/efeitos dos fármacos , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
8.
PLoS One ; 10(2): e0117394, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671663

RESUMO

Cationic antimicrobial peptides and their therapeutic potential have garnered growing interest because of the proliferation of bacterial resistance. However, the discovery of new antimicrobial peptides from animals has proven challenging due to the limitations associated with conventional biochemical purification and difficulties in predicting active peptides from genomic sequences, if known. As an example, no antimicrobial peptides have been identified from the American alligator, Alligator mississippiensis, although their serum is antimicrobial. We have developed a novel approach for the discovery of new antimicrobial peptides from these animals, one that capitalizes on their fundamental and conserved physico-chemical properties. This sample-agnostic process employs custom-made functionalized hydrogel microparticles to harvest cationic peptides from biological samples, followed by de novo sequencing of captured peptides, eliminating the need to isolate individual peptides. After evaluation of the peptide sequences using a combination of rational and web-based bioinformatic analyses, forty-five potential antimicrobial peptides were identified, and eight of these peptides were selected to be chemically synthesized and evaluated. The successful identification of multiple novel peptides, exhibiting antibacterial properties, from Alligator mississippiensis plasma demonstrates the potential of this innovative discovery process in identifying potential new host defense peptides.


Assuntos
Jacarés e Crocodilos/metabolismo , Jacarés e Crocodilos/microbiologia , Anti-Infecciosos/metabolismo , Bioprospecção , Peptídeos/metabolismo , Proteômica , Jacarés e Crocodilos/fisiologia , Sequência de Aminoácidos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/farmacologia
9.
Front Microbiol ; 2: 128, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21772832

RESUMO

Pseudomonas aeruginosa is a highly versatile opportunistic pathogen and its ability to produce biofilms is a direct impediment to the healing of wounds and recovery from infection. Interest in anti-microbial peptides (AMPs) has grown due to their potential therapeutic applications and their possible use against antibiotic resistant bacteria. LL-37 is the only cathelicidin expressed by humans. In this study, we tested LL-37 and the effect of a protease-resistant LL-37 peptide mimetic, the peptide enantiomer D-LL-37, for anti-microbial and anti-biofilm activity against P. aeruginosa. Both forms of the peptide were equally effective as AMPs with similar killing kinetics. Circular dichroism spectra were obtained to demonstrate the chirality of D- and L-LL-37, and the trypsin resistance of D-LL-37 was confirmed. The helical cathelicidin from the cobra Naja atra (NA-CATH), and synthetic peptide variations (ATRA-1, ATRA-2, NA-CATH:ATRA1-ATRA1) were also tested. Although the cobra cathelicidin and related peptides had strong anti-microbial activity, those tested did not inhibit Pseudomonas biofilm formation, neither did control peptides. Both D- and L-LL-37 inhibited the attachment of Pseudomonas to a 96-well plate and decreased the amount of pre-formed (established) biofilm. D-LL-37 is able to promote Pseudomonas motility and decrease biofilm formation by altering the rate of twitching as well as by downregulating the expression of the biofilm-related genes, rhlA and rhlB, similar to L-LL-37. Both L- and D-LL-37 protected Galleria mellonella in vivo against Pseudomonas infection, while NA-CATH:ATRA1-ATRA1 peptide did not. This study demonstrates the ability and equivalence of D-LL-37 compared to L-LL-37 to promote bacterial twitching motility and inhibit biofilm formation, and protect against in vivo infection, and suggests that this peptide could be a critical advancement in the development of new treatments for P. aeruginosa infection.

10.
BMC Microbiol ; 11: 114, 2011 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-21605457

RESUMO

BACKGROUND: Chronic, infected wounds typically contain multiple genera of bacteria, including Staphylococcus aureus, many of which are strong biofilm formers. Bacterial biofilms are thought to be a direct impediment to wound healing. New therapies that focus on a biofilm approach may improve the recovery and healing rate for infected wounds. In this study, cathelicidins and related short, synthetic peptides were tested for their anti-microbial effectiveness as well as their ability to inhibit the ability of S. aureus to form biofilms. RESULTS: The helical human cathelicidin LL-37 was tested against S. aureus, and was found to exhibit effective anti-microbial, anti-attachment as well as anti-biofilm activity at concentrations in the low µg/ml range. The effect of peptide chirality and associated protease-resistance was explored through the use of an all-D amino acid peptide, D-LL-37, and in turn compared to scrambled LL-37. Helical cathelicidins have been identified in other animals such as the Chinese cobra, Naja atra (NA-CATH). We previously identified an 11-residue imperfectly repeated pattern (ATRA motif) within the sequence of NA-CATH. A series of short peptides (ATRA-1, -2, -1A), as well as a synthetic peptide, NA-CATH:ATRA1-ATRA1, were designed to explore the significance of the conserved residues within the ATRA motif for anti-microbial activity. The CD spectrum of NA-CATH and NA-CATH:ATRA1-ATRA1 revealed the structural properties of these peptides and suggested that helicity may factor into their anti-microbial and anti-biofilm activities. CONCLUSIONS: The NA-CATH:ATRA1-ATRA1 peptide inhibits the production of biofilm by S. aureus in the presence of salt, exhibiting anti-biofilm activity at lower peptide concentrations than NA-CATH, LL-37 and D-LL-37; and demonstrates low cytoxicity against host cells but does not affect bacterial attachment. The peptides utilized in this anti-biofilm approach may provide templates for a new group of anti-microbials and potential future topical therapeutics for treating chronic wound infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Drogas Desenhadas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Aderência Bacteriana/efeitos dos fármacos , Drogas Desenhadas/química , Humanos , Catelicidinas
11.
Biochem Biophys Res Commun ; 396(4): 825-30, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20438706

RESUMO

We have identified an 11-residue pattern (KR(F/A)KKFFKK(L/P)K), which we have named the ATRA motif, within the sequence of the Chinese cobra (Naja atra) cathelicidin. A series of 11-residue peptides (ATRA-1, -2, -1A and -1P) were designed to probe the significance of the conserved residues within the ATRA motif, and their contributions to antimicrobial performance. The antimicrobial activities of the peptides were assessed against Escherichia coli K12 strain and Aggregatibacter actinomycetemcomitans Y4. ATRA-1 and -1A, demonstrated potencies comparable to that of N. atra cathelicidin. Structural examination by circular dichroism of the four short peptides suggested the significance of specific amino acid positions within the motif by their contribution to helicity. The results of these studies indicate that short peptides derived from the repeated ATRA motif from the N. atra cathelicidin can demonstrate both low toxicity against host cells and high antimicrobial activity against the gram-negative bacteria used in this study. They constitute novel, effective antimicrobial peptides that are much shorter (and thus less expensive to produce) than the natural cathelicidins, and they may represent new templates for therapeutic drug development.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Elapidae/metabolismo , Escherichia coli/efeitos dos fármacos , Oligopeptídeos/farmacologia , Pasteurellaceae/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Dados de Sequência Molecular , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Catelicidinas
12.
Biochem Biophys Res Commun ; 396(2): 246-51, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20399752

RESUMO

Francisella infects the lungs causing pneumonic tularemia. Focusing on the lung's host defense, we have examined antimicrobial peptides as part of the innate immune response to Francisella infection. Interest in antimicrobial peptides, such as the cathelicidins, has grown due their potential therapeutic applications and the increasing problem of bacterial resistance to commonly used antibiotics. Only one human cathelicidin, LL-37, has been characterized. Helical cathelicidins have also been discovered in snakes including the Chinese King Cobra, Naja atra (NA-CATH). Four synthetic 11-residue peptides (ATRA-1, -2, -1A and -1P) containing variations of a repeated motif within NA-CATH were designed. We hypothesized that these smaller synthetic peptides could have excellent antimicrobial effectiveness with shorter length (and less cost), making them strong potential candidates for development into broad-spectrum antimicrobial compounds. We tested the susceptibility of F. novicida to four ATRA peptides, LL-37, and NA-CATH. Two of the ATRA peptides had high antimicrobial activity (microM), while the two proline-containing ATRA peptides had low activity. The ATRA peptides did not show significant hemolytic activity even at high peptide concentration, indicating low cytotoxicity against host cells. NA-CATH killed Francisella bacteria more quickly than LL-37. However, LL-37 was the most effective peptide against F. novicida (EC50=50 nM). LL-37 mRNA was induced in A549 cells by Francisella infection. We recently demonstrated that F. novicida forms in vitro biofilms. LL-37 inhibited F. novicida biofilm formation at sub-antimicrobial concentrations. Understanding the properties of these peptides, and their endogenous expression in the lung could lead to potential future therapeutic interventions for this lung infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Catelicidinas/farmacologia , Francisella/efeitos dos fármacos , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Catelicidinas/química , Linhagem Celular , Francisella/fisiologia , Humanos , Dados de Sequência Molecular
13.
Biochem Biophys Res Commun ; 371(4): 670-4, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18452706

RESUMO

The ability of human beta-defensins hBD-1, hBD-2, and hBD-3 to exert direct in vitro antimicrobial effects was evaluated using Francisella tularensis Live Vaccine Strain (LVS) and Francisella novicida. While hBD-2 showed some antimicrobial activity in these assays, only hBD-3 demonstrated significant potency against Francisella. Francisella tularensis LVS infection induced elevated levels of hBD-2 mRNA in human airway epithelial (A549) cells, while having no significant impact on the levels of hBD-3 and only a moderate effect on the level of hBD-1 mRNA. Francisella infection avoided stimulating the production of the most potent anti-Francisella host peptide, hBD-3, in A549 cells, although hBD-3 is stimulated by other treatments. The differential induction of beta-defensins in Francisella infected lung epithelial cells suggests a complex dynamic in the expression of antimicrobial peptides and the innate immune response.


Assuntos
Francisella tularensis/imunologia , Pulmão/imunologia , Pulmão/microbiologia , beta-Defensinas/metabolismo , Linhagem Celular , Francisella tularensis/efeitos dos fármacos , Humanos , Imunidade Inata , Pulmão/efeitos dos fármacos , RNA Mensageiro/metabolismo , beta-Defensinas/genética , beta-Defensinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...