Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35336018

RESUMO

Diabetes is a chronic condition which affects the glucose metabolism in the body. In lieu of any clinical "cure," the condition is managed through the administration of pharmacological aids, insulin supplements, diet restrictions, exercise, and the like. The conventional clinical prescriptions are limited by their life-long dependency and diminished potency, which in turn hinder the patient's recovery. This necessitated an alteration in approach and has instigated several investigations into other strategies. As Type 1 diabetes (T1D) is known to be an autoimmune disorder, targeting the immune system in activation and/or suppression has shown promise in reducing beta cell loss and improving insulin levels in response to hyperglycemia. Another strategy currently being explored is the use of nanoparticles in the delivery of immunomodulators, insulin, or engineered vaccines to endogenous immune cells. Nanoparticle-assisted targeting of immune cells holds substantial potential for enhanced patient care within T1D clinical settings. Herein, we summarize the knowledge of etiology, clinical scenarios, and the current state of nanoparticle-based immunotherapeutic approaches for Type 1 diabetes. We also discuss the feasibility of translating this approach to clinical practice.

2.
Front Cell Dev Biol ; 9: 704483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458264

RESUMO

Stem cell-derived islet organoids constitute a promising treatment of type 1 diabetes. A major hurdle in the field is the lack of appropriate in vivo method to determine graft outcome. Here, we investigate the feasibility of in vivo tracking of transplanted stem cell-derived islet organoids using magnetic particle imaging (MPI) in a mouse model. Human induced pluripotent stem cells-L1 were differentiated to islet organoids and labeled with superparamagnetic iron oxide nanoparticles. The phantoms comprising of different numbers of labeled islet organoids were imaged using an MPI system. Labeled islet organoids were transplanted into NOD/scid mice under the left kidney capsule and were then scanned using 3D MPI at 1, 7, and 28 days post transplantation. Quantitative assessment of the islet organoids was performed using the K-means++ algorithm analysis of 3D MPI. The left kidney was collected and processed for immunofluorescence staining of C-peptide and dextran. Islet organoids expressed islet cell markers including insulin and glucagon. Image analysis of labeled islet organoids phantoms revealed a direct linear correlation between the iron content and the number of islet organoids. The K-means++ algorithm showed that during the course of the study the signal from labeled islet organoids under the left kidney capsule decreased. Immunofluorescence staining of the kidney sections showed the presence of islet organoid grafts as confirmed by double staining for dextran and C-peptide. This study demonstrates that MPI with machine learning algorithm analysis can monitor islet organoids grafts labeled with super-paramagnetic iron oxide nanoparticles and provide quantitative information of their presence in vivo.

3.
Onco Targets Ther ; 14: 2761-2772, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907419

RESUMO

The properties of cancer stem cells (CSCs) have recently gained attention as an avenue of intervention for cancer therapy. In this review, we highlight some of the key roles of CSCs in altering the cellular microenvironment in favor of cancer progression. We also report on various studies in this field which focus on transformative properties of CSCs and their influence on surrounding cells or targets through the release of cellular cargo in the form of extracellular vesicles. The findings from these studies encourage the development of novel interventional therapies that can target and prevent cancer through efficient, more effective methods. These methods include targeting immunosuppressive proteins and biomarkers, promoting immunization against tumors, exosome-mediated CSC conversion, and a focus on the quiescent properties of CSCs and their role in cancer progression. The resulting therapeutic benefit and transformative potential of these novel approaches to stem cell-based cancer therapy provide a new direction in cancer treatment, which can focus on nanoscale, molecular properties of the cellular microenvironment and establish a more precision medicine-oriented paradigm of treatment.

4.
Mol Imaging Biol ; 23(1): 18-29, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32833112

RESUMO

PURPOSE: Current approaches to quantification of magnetic particle imaging (MPI) for cell-based therapy are thwarted by the lack of reliable, standardized methods of segmenting the signal from background in images. This calls for the development of artificial intelligence (AI) systems for MPI analysis. PROCEDURES: We utilize a canonical algorithm in the domain of unsupervised machine learning, known as K-means++, to segment the regions of interest (ROI) of images and perform iron quantification analysis using a standard curve model. We generated in vitro, in vivo, and ex vivo data using islets and mouse models and applied the AI algorithm to gain insight into segmentation and iron prediction on these MPI data. In vitro models included imaging the VivoTrax-labeled islets in varying numbers. In vivo mouse models were generated through transplantation of increasing numbers of the labeled islets under the kidney capsule of mice. Ex vivo data were obtained from the MPI images of excised kidney grafts. RESULTS: The K-means++ algorithms segmented the ROI of in vitro phantoms with minimal noise. A linear correlation between the islet numbers and the increasing prediction of total iron value (TIV) in the islets was observed. Segmentation results of the ROI of the in vivo MPI scans showed that with increasing number of transplanted islets, the signal intensity increased with linear trend. Upon segmenting the ROI of ex vivo data, a linear trend was observed in which increasing intensity of the ROI yielded increasing TIV of the islets. Through statistical evaluation of the algorithm performance via intraclass correlation coefficient validation, we observed excellent performance of K-means++-based model on segmentation and quantification analysis of MPI data. CONCLUSIONS: We have demonstrated the ability of the K-means++-based model to provide a standardized method of segmentation and quantification of MPI scans in an islet transplantation mouse model.


Assuntos
Inteligência Artificial , Transplante das Ilhotas Pancreáticas , Fenômenos Magnéticos , Imagem Molecular , Algoritmos , Animais , Humanos , Imageamento Tridimensional , Ilhotas Pancreáticas/diagnóstico por imagem , Rim/diagnóstico por imagem , Camundongos , Modelos Animais , Tomografia Computadorizada por Raios X
5.
Sci Rep ; 10(1): 5302, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210316

RESUMO

Aberrant expression of miRNAs in pancreatic islets is closely related to the development of type 1 diabetes (T1D). The aim of this study was to identify key miRNAs dysregulated in pancreatic islets during T1D progression and to develop a theranostic approach to modify their expression using an MRI-based nanodrug consisting of iron oxide nanoparticles conjugated to miRNA-targeting oligonucleotides in a mouse model of T1D. Isolated pancreatic islets were derived from NOD mice of three distinct age groups (3, 8 and 18-week-old). Total RNA collected from cultured islets was purified and global miRNA profiling was performed with 3D-Gene global miRNA microarray mouse chips encompassing all mouse miRNAs available on the Sanger miRBase V16. Of the miRNAs that were found to be differentially expressed across three age groups, we identified one candidate (miR-216a) implicated in beta cell proliferation for subsequent validation by RT-PCR. Alterations in miR-216a expression within pancreatic beta cells were also examined using in situ hybridization on the frozen pancreatic sections. For in vitro studies, miR-216a mimics/inhibitors were conjugated to iron oxide nanoparticles and incubated with beta cell line, ßTC-6. Cell proliferation marker Ki67 was evaluated. Expression of the phosphatase and tensin homolog (PTEN), which is one of the direct targets of miR-216a, was analyzed using western blot. For in vivo study, the miR-216a mimics/inhibitors conjugated to the nanoparticles were injected into 12-week-old female diabetic Balb/c mice via pancreatic duct. The delivery of the nanodrug was monitored by in vivo MRI. Blood glucose of the treated mice was monitored post injection. Ex vivo histological analysis of the pancreatic sections included staining for insulin, PTEN and Ki67. miRNA microarray demonstrated that the expression of miR-216a in the islets from NOD mice significantly changed during T1D progression. In vitro studies showed that treatment with a miR-216a inhibitor nanodrug suppressed proliferation of beta cells and increased the expression of PTEN, a miR-216a target. In contrast, introduction of a mimic nanodrug decreased PTEN expression and increased beta cell proliferation. Animals treated in vivo with a mimic nanodrug had higher insulin-producing functionality compared to controls. These observations were in line with downregulation of PTEN and increase in beta cell proliferation in that group. Our studies demonstrated that miR-216a could serve as a potential therapeutic target for the treatment of diabetes. miR-216a-targeting theranostic nanodrugs served as exploratory tools to define functionality of this miRNA in conjunction with in vivo MR imaging.


Assuntos
Proliferação de Células , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Modelos Animais de Doenças , Células Secretoras de Insulina/citologia , MicroRNAs/genética , Nanomedicina Teranóstica , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Feminino , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...