Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 3(3): fcab155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34761221

RESUMO

The CNS has traditionally been considered an immune privileged site, but is now understood to have a system of immune surveillance, predominantly involving CD4+ T-cells. Identifying functional differences between CNS and blood CD4+ T-cells, therefore, have relevance to CNS immune surveillance as well as to neurological conditions, such as multiple sclerosis, in which CD4+ T-cells play a central role. Here, CD4+ T-cells were purified from CSF and blood from 21 patients with newly diagnosed treatment-naïve multiple sclerosis and 20 individuals with non-inflammatory disorders using fluorescence-activated cell sorting, and their transcriptomes were profiled by RNA sequencing. Paired comparisons between CD4+ T-cells from CSF and blood identified 5156 differentially expressed genes in controls and 4263 differentially expressed in multiple sclerosis patients at false discovery rate <5%. Differential expression analysis of CD4+ T-cells collected from the CSF highlighted genes involved in migration, activation, cholesterol biosynthesis and signalling, including those with known relevance to multiple sclerosis pathogenesis and treatment. Expression of markers of CD4+ T-cell subtypes suggested an increased proportion of Th1 and Th17 cells in CSF. Gene ontology terms significant only in multiple sclerosis were predominantly those involved in cellular proliferation. A two-way comparison of CSF versus blood CD4+ T-cells in multiple sclerosis compared with non-inflammatory disorder controls identified four significant genes at false discovery rate <5% (CYP51A1, LRRD1, YES1 and PASK), further implicating cholesterol biosynthesis and migration mechanisms. Analysis of CSF CD4+ T-cells in an extended cohort of multiple sclerosis cases (total N = 41) compared with non-inflammatory disorder controls (total N = 38) identified 140 differentially expressed genes at false discovery rate < 5%, many of which have known relevance to multiple sclerosis, including XBP1, BHLHE40, CD40LG, DPP4 and ITGB1. This study provides the largest transcriptomic analysis of purified cell subpopulations in CSF to date and has relevance for the understanding of CNS immune surveillance, as well as multiple sclerosis pathogenesis and treatment discovery.

2.
Oncogene ; 24(14): 2430-2, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15735763

RESUMO

Recent studies using hypomorphic DNA methyltransferase 1 (DNMT1) alleles have suggested that strategies aiming to reduce DNA methylation may increase genomic instability and lymphomagenesis. Given our recent finding that loss of methyl-binding domain protein 2 (Mbd2) suppresses intestinal tumorigenesis, we have tested whether loss of Mbd2 increases lymphomagenesis by intercrossing Mbd2 deficient mice with p53 deficient and p53 heterozygous mice. Unlike DNMT1, loss of Mbd2 does not accelerate lymphomagenesis, arguing that MBD2 may represent a better potential therapeutic target than DNMT1.


Assuntos
Proteínas de Ligação a DNA/genética , Linfoma/patologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Metilação de DNA , Linfoma/genética , Camundongos , Camundongos Knockout , Proteína Supressora de Tumor p53/genética
3.
Oncogene ; 22(46): 7130-6, 2003 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-14562041

RESUMO

MBD4 was originally identified through its methyl binding domain, but has more recently been characterized as a thymine DNA glycosylase that interacts with the mismatch repair (MMR) protein MLH1. In vivo, MBD4 functions to reduce the mutability of methyl-CpG sites in the genome and mice deticient in MBD4 show increased intestinal tumorigenesis on an Apc(Min/+) background. As MLH1 and other MMR proteins have been functionally linked to apoptosis, we asked whether MBD4 also plays a role in mediating the apoptotic response within the murine small intestine. Mice deficient for MBD4 showed significantly reduced apoptotic responses 6 h following treatment with a range of cytotoxic agents including gamma-irradiation, cisplatin, temozolomide and 5-fluorouracil (5-FU). This leads to increased clonogenic survival in vivo in Mbd4(-/-) mice following exposure to either 5-FU or cisplatin. We next analysed the apoptotic response to 5-FU and temozolomide in doubly mutant Mbd4(-/-), Mlh1(-/-) mice but observed no additive decrease. The results imply that MBD4 and MLH1 lie in the same pathway and therefore that MMR-dependent apoptosis is mediated through MBD4. MBD4 deficiency also reduced the normal apoptotic response to gamma-irradiation, which we show is independent of Mlh1 status (at least in the murine small intestine), so suggesting that the reliance upon MBD4 may extend beyond MMR-mediated apoptosis. Our results establish a novel functional role for MBD4 in the cellular response to DNA damage and may have implications for its role in suppressing neoplasia.


Assuntos
Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Dano ao DNA , Reparo do DNA/genética , Dacarbazina/análogos & derivados , Endodesoxirribonucleases/deficiência , Mucosa Intestinal/patologia , Intestino Delgado/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cisplatino/toxicidade , Dacarbazina/toxicidade , Endodesoxirribonucleases/genética , Fluoruracila/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Intestino Delgado/citologia , Intestino Delgado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...