Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Horm Behav ; 148: 105298, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621293

RESUMO

For nearly a century, we have known that brain photoreceptors regulate avian seasonal biology. Two photopigments, vertebrate ancient opsin (VA) and neuropsin (OPN5), provide possible molecular substrates for these photoreceptor pathways. VA fulfills many criteria for providing light input to the reproductive response, but a functional link has yet to be demonstrated. This study examined the role of VA and OPN5 in the avian photoperiodic response of Japanese quail (Coturnix japonica). Non-breeding male quail were housed under short days (6L:18D) and received an intracerebroventricular infusion of adeno-associated viral vectors with shRNAi that selectively inhibited either VA or OPN5. An empty viral vector acted as a control. Quail were then photostimulated (16L:8D) to stimulate gonadal growth. Two long days significantly increased pituitary thyrotrophin-stimulating hormone ß-subunit (TSHß) and luteinizing hormone ß-subunit (LHß) mRNA of VA shRNAi treated quail compared to controls. Furthermore, at one week there was a significant increase, compared to controls, in both hypothalamic gonadotrophin releasing hormone-I (GnRH-I) mRNA and paired testicular mass in VA shRNAi birds. Opn5 shRNAi facilitated the photoinduced increase in TSHß mRNA at 2 days, but no other differences were identified compared to controls. Contrary to our expectations, the silencing of deep brain photoreceptors enhanced the response of the reproductive axis to photostimulation rather than preventing it. In addition, we show that VA opsin plays a dominant role in the light-dependent neuroendocrine control of seasonal reproduction in birds. Together our findings suggest the photoperiodic response involves at least two photoreceptor types and populations working together with VA opsin playing a dominant role.


Assuntos
Coturnix , Opsinas , Animais , Masculino , Coturnix/fisiologia , Opsinas/genética , Reprodução , Encéfalo/metabolismo , Codorniz , Tireotropina Subunidade beta/genética , Tireotropina Subunidade beta/metabolismo , RNA Mensageiro/metabolismo , Fotoperíodo
2.
Oecologia ; 199(3): 549-562, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35732927

RESUMO

Circulating sex steroid concentrations vary dramatically across the year in seasonally breeding animals. The ability of circulating sex steroids to effect muscle function can be modulated by changes in intracellular expression of steroid metabolizing enzymes (e.g., 5α-reductase type 2 and aromatase) and receptors. Together, these combined changes in plasma hormones, metabolizing enzymes and receptors allow for seasonally appropriate changes in skeletal muscle function. We tested the hypothesis that gene expression of sex steroid metabolizing enzymes and receptors would vary seasonally in skeletal muscle and these changes would differ between a migrant and resident life history strategy. We quantified annual changes in plasma testosterone and gene expression in pectoralis and gastrocnemius skeletal muscles using quantitative polymerase chain reaction (qPCR) in free-living migrant (Zonotrichia leucophrys gambelii) and resident (Z. l. nuttalli) subspecies of white-crowned sparrow during breeding, pre-basic molt, and wintering life history stages. Pectoralis muscle profile was largest in migrants during breeding, while residents maintained large muscle profiles year-round. Circulating testosterone peaked during breeding in both subspecies. Pectoralis muscle androgen receptor mRNA expression was lower in females of both subspecies during breeding. Estrogen receptor-α expression was higher in the pectoralis muscle, but not gastrocnemius, of residents throughout the annual cycle when compared to migrants. Pectoralis aromatase expression was higher in resident males compared to migrant males. No differences were observed for 5α-reductase 2. Between these two subspecies, patterns of plasma testosterone and androgen receptors appear to be conserved, however estrogen receptor gene expression appears to have diverged.


Assuntos
Pardais , Animais , Aromatase/genética , Aromatase/metabolismo , Feminino , Expressão Gênica , Masculino , Músculo Esquelético , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Estações do Ano , Pardais/genética , Testosterona/metabolismo
3.
Sci Rep ; 11(1): 21092, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702953

RESUMO

The role of maternal investment in avian offspring has considerable life history implications on production traits and therefore potential for the poultry industry. A first generation (G1) of Japanese quail (Coturnix japonica) were bred from a 2 × 2 factorial design. Parents were fed either a control or methyl-enhanced (HiBET) diet, and their eggs were treated with a vehicle or corticosterone injection during day 5 of incubation. A subset of G1 birds were subjected to an open field trial (OFT) and capture-restraint stress protocol. Significant effects of HiBET diet were found on parental egg and liver weights, G1 hatch, liver and female reproductive tract weights, egg productivity, latency to leave the OFT central zone, male baseline 11-dehydrocorticosterone, and female androstenedione plasma concentrations. In ovo treatment significantly affected latency to return to the OFT, male baseline testosterone and androstenedione, and change in androstenedione plasma concentration. Diet by treatment interactions were significant for G1 liver weight and male baseline plasma concentrations of corticosterone. These novel findings suggest significant positive effects on reproduction, growth, precociousness, and hypothalamic-pituitary-adrenal axis function from enhanced methyl diets, and are important in understanding how in ovo stressors (representing maternal stress), affect the first offspring generation.


Assuntos
Ração Animal , Corticosterona/metabolismo , Coturnix/crescimento & desenvolvimento , Óvulo/metabolismo , Reprodução , Seleção Artificial , Animais , Feminino , Masculino , Especificidade de Órgãos
4.
J Neuroendocrinol ; 33(9): e13032, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34463408

RESUMO

Across taxa, the seasonal transition between non-breeding and breeding states is controlled by localised thyroid hormone signalling in the deep brain via reciprocal switching of deiodinase enzyme expression from type 3 (DIO3) to type 2 (DIO2). This reciprocal switch is considered to be mediated by increasing thyroid-stimulating hormone ß (TSHß) release from the pars tuberalis, which occurs in response to a change in photoperiod. Although well characterised in a handful of model organisms in controlled laboratory settings, this pathway remains largely unexplored in free-living animals under natural environmental conditions. In this comparative gene expression study, we investigated hypothalamic thyroid hormone signalling in two seasonally breeding subspecies of white-crowned sparrow (Zonotrichia leucophrys), across the entirety of their annual cycles. The migratory Gambel's (Z. l. gambelii) and resident Nuttall's (Z. l. nuttalii) subspecies differ with respect to timing of reproduction, as well as life history stage and migratory strategies. Although DIO3 mRNA expression was elevated and DIO2 mRNA expression was reduced in the wintering period in both subspecies, DIO2 peaked in both subspecies prior to the onset of reproduction. However, there was differential timing between subspecies in peak DIO2 expression. Intriguingly, seasonal modulation of TSHß mRNA was only observed in migrants, where expression was elevated at the start of breeding, consistent with observations from other highly photoperiodic species. There was no correlation between TSHß, DIO2 and gonadotropin-releasing hormone-I mRNA or reproductive metrics in residents. Based on these observed differences, we discuss potential implications for our understanding of how changes in medial basal hypothalamic gene expression mediates initiation of seasonal reproduction.

5.
Integr Comp Biol ; 60(4): 943-954, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32681802

RESUMO

Nest building consists of a series of motor actions, which are concomitant with activity in regions of the anterior motor pathway, the social behavior network, and the reward circuity in nest building adult male zebra finches (Taeniopygia guttata). It is not clear, however, whether this activity is due to nest building, collection, and/or manipulation of nest material. To identify which areas of the brain are specifically involved, we used immunohistochemistry to quantify the immediate early gene c-Fos in male zebra finches that were nest building (Building), birds given a nest box but could interact only with tied down nest material (Fixed), and birds that were not given a nest box or nest material (Control). We investigated the following brain regions: the anterior motor pathway (anterior ventral mesopallium [AMV], AN, anterior striatum [ASt]), areas of the social behavior network (bed nucleus of the stria terminalis, dorsomedial subdivision [BSTmd], lateral septum [LS]), the dopaminergic reward circuitry (ventral tegmental area), and the cerebellum. We found that there was greater Fos immunoreactivity expression in the BSTmd, LS, and AMV with increased material deposition; in LS, AMV ASt, and Folium VI with increased material carrying; in LS, AMV, and ASt with increased nest material tucking; and in LS and all folia (except Folium VIII) with increased tugging at tied down material. These data confirm a functional role for areas of the anterior motor pathway, social behavior network, and the cerebellum in nest material collection and manipulation by birds.


Assuntos
Tentilhões , Animais , Encéfalo , Masculino , Comportamento de Nidação , Recompensa , Comportamento Social
6.
Gen Comp Endocrinol ; 291: 113434, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32057911

RESUMO

The extreme climatic conditions (ECCs) of the Qinghai-Tibet Plateau impose strong selective pressures on the evolution of phenotypic traits in free-living animals. It is not well understood how animals on the Qinghai-Tibet Plateau modify their adrenocortical functions in response to both predictable and unpredictable events of ECCs, especially when the available resources are lowest during the wintering life-history stage. To uncover potential physiological mechanisms, we studied the life history stage dependent features of morphology, the plasma corticosterone response to acute stress and brain glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) mRNA expression in two sympatric snow finches: the white-rumped snow finch (Onychostruthus taczanowskii, WRSF); and the rufous-necked snow finch, Pyrgilauda ruficollis, RNSF) in Qinghai Province, China. Our results showed that (a) baseline corticosterone and stressor-induced corticosterone levels significantly varied with life history stage, but not between the species; (b) in WRSF, GR mRNA expression in the paraventricular nucleus was higher in the wintering stage compared to the pre-basic molt stage. There were no differences in hippocampus MR mRNA expression between stages in either species; (c) in the wintering stage, the suppression of corticosterone secretion in both species was an unexpected strategy in free-living animals. Both convergent and divergent phenotypic traits of adrenocortical responses to acute stress in two sympatric snow finches contribute to our understanding of the coping mechanisms of closely related species in the severe winter on the Qinghai-Tibet Plateau.


Assuntos
Córtex Suprarrenal/fisiologia , Tentilhões/fisiologia , Estações do Ano , Neve , Estresse Fisiológico , Simpatria/fisiologia , Animais , Cruzamento , Corticosterona/sangue , Tentilhões/sangue , Estágios do Ciclo de Vida , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Esteroides/metabolismo , Tibet
7.
J Exp Biol ; 223(Pt 1)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31796607

RESUMO

The hypothalamic-pituitary-adrenal (HPA) axis is under complex regulatory control at multiple levels. Enzymatic regulation plays an important role in both circulating levels of glucocorticoids and target tissue exposure. Three key enzyme pathways are responsible for the immediate control of glucocorticoids. De novo synthesis of glucocorticoid from cholesterol involves a multistep enzymatic cascade. This cascade terminates with 11ß-hydroxylase, responsible for the final conversion of 11-deoxy precursors into active glucocorticoids. Additionally, 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) controls regeneration of glucocorticoids from inactive metabolites, providing a secondary source of active glucocorticoids. Localized inactivation of glucocorticoids is under the control of Type 2 11ß-HSD (11ß-HSD2). The function of these enzymes is largely unexplored in wild species, particularly songbirds. Here, we investigated the contribution of both clearance and generation of glucocorticoids to regulation of the hormonal stress response via the use of pharmacological antagonists. Additionally, we mapped 11ß-HSD gene expression. We found 11ß-HSD1 primarily in liver, kidney and adrenal glands, although it was detectable across all tissue types. 11ß-HSD2 was predominately expressed in the adrenal glands and kidney with moderate gonadal and liver expression. Inhibition of glucocorticoid generation by metyrapone was found to decrease levels peripherally, while both peripheral and central administration of the 11ß-HSD2 inhibitor DETC resulted in elevated concentrations of corticosterone. These data suggest that during the stress response, peripheral antagonism of the 11ß-HSD system has a greater impact on circulating glucocorticoid levels than central control. Further studies should aim to elucidate the respective roles of the 11ß-HSD and 11ß-hydroxylase enzymes.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Corticosterona/sangue , Aves Canoras/fisiologia , Estresse Fisiológico/fisiologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Animais , Feminino , Perfilação da Expressão Gênica/veterinária , Masculino
8.
Brain Behav Evol ; 92(1-2): 63-70, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30212810

RESUMO

Cognitive traits are predicted to be under intense selection in animals moving into new environments and may determine the success, or otherwise, of dispersal and invasions. In particular, spatial information related to resource distribution is an important determinant of neural development. Spatial information is predicted to vary for invasive species encountering novel environments. However, few studies have tested how cognition or neural development varies intraspecifically within an invasive species. In Australia, the non-native common starling Sturnus vulgaris inhabits a range of habitats that vary in seasonal resource availability and distribution. We aimed to identify variations in the brain mass and hippocampus volume of starlings in Australia related to environmental variation across two substantially different habitat types. Specifically, we predicted variation in brain mass and hippocampal volume in relation to environmental conditions, latitude, and climatic variables. To test this, brain mass and volumes of the hippocampus and two control brain regions (telencephalon and tractus septomesencephalicus) were quantified from starling brains gathered from across the species' range in south eastern Australia. When comparing across an environmental gradient, there was a significant interaction between sex and environment for overall brain mass, with greater sexual dimorphism in brain mass in inland populations compared to those at the coast. There was no significant difference in hippocampal volume in relation to environmental measures (hippocampus volume, n = 17) for either sex. While these data provide no evidence for intraspecific environmental drivers for changes in hippocampus volume in European starlings in Australia, they do suggest that environmental factors contribute to sex differences in brain mass. This study identifies associations between the brain volume of a non-native species and the environment; further work in this area is required to elucidate the mechanisms driving this relationship.


Assuntos
Ecossistema , Hipocampo/anatomia & histologia , Caracteres Sexuais , Estorninhos/anatomia & histologia , Animais , Austrália , Feminino , Masculino , Mesencéfalo/anatomia & histologia , Telencéfalo/anatomia & histologia
9.
Horm Behav ; 97: 31-38, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29030109

RESUMO

Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes.


Assuntos
Encéfalo/metabolismo , Comunicação , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Animais , Corticosterona/metabolismo , Glucocorticoides/metabolismo , Hipotálamo/metabolismo , Masculino , Passeriformes/metabolismo , Hipófise/metabolismo
10.
Am J Physiol Endocrinol Metab ; 304(9): E909-21, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23443924

RESUMO

Animal domestication has resulted in changes in growth and size. It has been suggested that this may have involved selection for differences in appetite. Divergent growth between chickens selected for egg laying or meat production is one such example. The neurons expressing AGRP and POMC in the basal hypothalamus are important components of appetite regulation, as are the satiety feedback pathways that carry information from the intestine, including CCK and its receptor CCKAR (CCK1 receptor). Using 16 generations of a cross between a fast and a relatively slow growing strain of chicken has identified a region on chromosome 4 downstream of the CCKAR gene, which is responsible for up to a 19% difference in body weight at 12 wk of age. Animals possessing the high-growth haplotype at the locus have lower expression of mRNA and immunoreactive CCKAR in the brain, intestine, and exocrine organs, which is correlated with increased levels of orexigenic AGRP in the hypothalamus. Animals with the high-growth haplotype are resistant to the anorectic effect of exogenously administered CCK, suggesting that their satiety set point has been altered. Comparison with traditional breeds shows that the high-growth haplotype has been present in the founders of modern meat-type strains and may have been selected early in domestication. This is the first dissection of the physiological consequences of a genetic locus for a quantitative trait that alters appetite and gives us an insight into the domestication of animals. This will allow elucidation of how differences in appetite occur in birds and also mammals.


Assuntos
Animais Domésticos , Peso Corporal/genética , Peso Corporal/fisiologia , Galinhas/genética , Galinhas/fisiologia , Crescimento/genética , Crescimento/fisiologia , Receptor de Colecistocinina A/biossíntese , Receptor de Colecistocinina A/fisiologia , Resposta de Saciedade/fisiologia , Proteína Relacionada com Agouti/biossíntese , Proteína Relacionada com Agouti/genética , Alelos , Animais , Química Encefálica/fisiologia , Cruzamentos Genéticos , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Feminino , Genótipo , Imuno-Histoquímica , Masculino , Polimorfismo de Nucleotídeo Único/genética , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Colecistocinina A/genética , Distribuição Tecidual , Transcrição Gênica
11.
J Physiol ; 588(Pt 23): 4705-17, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20921194

RESUMO

The anterior olfactory nucleus (AON), a component of the main olfactory system, is a cortical region that processes olfactory information and acts as a relay between the main olfactory bulbs and higher brain regions such as the piriform cortex. Utilizing a transgenic rat in which an enhanced green fluorescent protein reporter gene is expressed in vasopressin neurones (eGFP-vasopressin), we have discovered a population of vasopressin neurones in the AON. These vasopressin neurones co-express vasopressin V1 receptors. They also co-express GABA and calbinin-D28k indicating that they are neurochemically different from the newly described vasopressin neurons in the main olfactory bulb. We utilized the immediate early gene product, early growth response protein 1 (Egr-1), to examine the functional role of these vasopressin neurons in processing social and non-social odours in the AON. Exposure of adult rats to a conspecific juvenile or a heterospecific predator odour leads to increases in Egr-1 expression in the AON in a subregion specific manner. However, only exposure to a juvenile increases Egr-1 expression in AON vasopressin neurons. These data suggest that vasopressin neurones in the AON may be selectively involved in the coding of social odour information.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica/fisiologia , Neurônios/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Vasopressinas/metabolismo , Animais , Comportamento Animal , Gatos , Proteína 1 de Resposta de Crescimento Precoce/genética , Feminino , Raposas , Proteínas de Fluorescência Verde , Masculino , Odorantes , Ratos , Ratos Sprague-Dawley
12.
J Physiol ; 587(Pt 23): 5679-89, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19822541

RESUMO

Dehydration increases vasopressin (antidiuretic hormone) secretion from the posterior pituitary gland to reduce water loss in the urine. Vasopressin secretion is determined by action potential firing in vasopressin neurones, which can exhibit continuous, phasic (alternating periods of activity and silence), or irregular activity. Autocrine kappa-opioid inhibition contributes to the generation of activity patterning of vasopressin neurones under basal conditions and so we used in vivo extracellular single unit recording to test the hypothesis that changes in autocrine kappa-opioid inhibition drive changes in activity patterning of vasopressin neurones during dehydration. Dehydration increased the firing rate of rat vasopressin neurones displaying continuous activity (from 7.1 +/- 0.5 to 9.0 +/- 0.6 spikes s(1)) and phasic activity (from 4.2 +/- 0.7 to 7.8 +/- 0.9 spikes s(1)), but not those displaying irregular activity. The dehydration-induced increase in phasic activity was via an increase in intraburst firing rate. The selective -opioid receptor antagonist nor-binaltorphimine increased the firing rate of phasic neurones in non-dehydrated rats (from 3.4 +/- 0.8 to 5.3 +/- 0.6 spikes s(1)) and dehydrated rats (from 6.4 +/- 0.5 to 9.1 +/- 1.2 spikes s(1)), indicating that kappa-opioid feedback inhibition of phasic bursts is maintained during dehydration. In a separate series of experiments, prodynorphin mRNA expression was increased in vasopressin neurones of hyperosmotic rats, compared to hypo-osmotic rats. Hence, it appears that dynorphin expression in vasopressin neurones undergoes dynamic changes in proportion to the required secretion of vasopressin so that, even under stimulated conditions, autocrine feedback inhibition of vasopressin neurones prevents over-excitation.


Assuntos
Desidratação/fisiopatologia , Neurônios/fisiologia , Receptores Opioides kappa/fisiologia , Vasopressinas/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Colecistocinina/farmacologia , Eletrofisiologia , Encefalinas/biossíntese , Encefalinas/genética , Feminino , Hipernatremia/fisiopatologia , Hiponatremia/fisiopatologia , Imuno-Histoquímica , Hibridização In Situ , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neurônios/efeitos dos fármacos , Ocitocina/farmacologia , Ocitocina/fisiologia , Precursores de Proteínas/biossíntese , Precursores de Proteínas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/antagonistas & inibidores
13.
Endocrinology ; 148(10): 5095-104, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17628000

RESUMO

Oxytocin plays a pivotal role in rat parturition, acting within the brain to facilitate its own release in the supraoptic nucleus (SON) and paraventricular nucleus, and to stimulate maternal behavior. We investigated oxytocin receptor (OTR) expression and activation perinatally. Using a (35)S-labeled riboprobe complementary to OTR mRNA, OTR expression was quantified in proestrus virgin, 21- and 22-day pregnant, parturient (90 min. from pup 1 birth), and postpartum (4-12 h from parturition) rats. Peak OTR mRNA expression was observed at parturition in the SON, brainstem regions, medial preoptic area (mPOA), bed nucleus of the stria terminalis (BnST), and olfactory bulbs, but there was no change in the paraventricular nucleus and lateral septum. OTR mRNA expression was increased on the day of expected parturition in the SON and brainstem, suggesting that oxytocin controls the pathway mediating input from uterine signals. Likewise, OTR mRNA expression was increased in the mPOA and BnST during labor/birth. In the olfactory bulbs and medial amygdala, parturition induced increased OTR mRNA expression compared with pre-parturition, reflecting their immediate response to new stimuli at birth. Postpartum OTR expression in all brain regions returned to levels observed in virgin rats. Parturition significantly increased the number of double-immunolabeled cells for Fos and OTR within the SON, brainstem, BnST, and mPOA regions compared with virgin rats. Thus, there are dynamic region-dependent changes in OTR-expressing cells at parturition. This altered OTR distribution pattern in the brain perinatally reflects the crucial role oxytocin plays in orchestrating both birth and maternal behavior.


Assuntos
Encéfalo/metabolismo , Parto/metabolismo , Prenhez/metabolismo , Receptores de Ocitocina/metabolismo , Animais , Tronco Encefálico/metabolismo , Feminino , Hipotálamo/metabolismo , Sistema Límbico/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Período Pós-Parto/metabolismo , Gravidez , Prenhez/fisiologia , Área Pré-Óptica/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Ocitocina/genética , Núcleo Supraóptico/fisiologia , Transmissão Sináptica
14.
Neurosci Lett ; 369(3): 191-6, 2004 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-15464263

RESUMO

We examined the activation of nNOS mRNA expression within the supraoptic and paraventricular nuclei (SON and PVN) of the hypothalamus. In salt-loaded rats nNOS mRNA expression was significantly increased in both nuclei. In rats given i.p. injections of 1.5 M NaCl (4 ml/kg), a small but significant increase in nNOS mRNA expression in the SON and PVN was found 6 h after injection; no change was detected 2 or 4 h after injection. In rats in which hyponatraemia had been induced experimentally, nNOS mRNA was downregulated in the SON, and expression levels were not increased within 4 h after intense acute osmotic stimuli. Finally, neurons of the SON were antidromically-activated by neural stalk stimulation for 2 h. No increase of nNOS mRNA expression in the SON was observed 2 h after stimulation. Thus, increased electrical activity is not directly coupled to rapidly increased expression of nNOS mRNA, and hence acute increases in nNOS mRNA expression are unlikely to play a role in short-term adaptation of the magnocellular system to osmotic stimulation.


Assuntos
Regulação da Expressão Gênica/fisiologia , Sistemas Neurossecretores/metabolismo , Óxido Nítrico Sintase/metabolismo , Análise de Variância , Animais , Contagem de Células/métodos , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hibridização In Situ/métodos , Sistemas Neurossecretores/efeitos dos fármacos , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo I , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Solução Salina Hipertônica/farmacologia , Núcleo Supraóptico/citologia , Núcleo Supraóptico/metabolismo , Fatores de Tempo
15.
Brain Res ; 927(1): 18-26, 2002 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-11814428

RESUMO

Oxytocin is synthesized by magnocellular neurons in the supraoptic and paraventricular nuclei (SON and PVN) and during pregnancy progesterone prevents premature activation of oxytocin neurons. Progesterone receptors (PR) are not detectable in SON oxytocin neurons of non-pregnant rats, so we sought to determine whether they are expressed during pregnancy and parturition. In addition, we examined PR expression in brainstem and hypothalamic regions that have known direct projections to the SON. Neuronal immunoreactive PR (irPR)-labeled nuclei were counted in sections from proestrous virgin, late pregnant (day 21) and parturient rats (90 min from birth onset). IrPR nuclei were not evident in the SON at any stage but irPR expression in the medial preoptic nucleus (MPA) significantly increased in pregnancy and parturition (159% and 189% of proestrous controls, respectively). Other hypothalamic areas did not exhibit a significant change in irPR expression. In the nucleus tractus solitarius (NTS) in the brainstem, there was no significant change in irPR in late pregnancy, but there was a significant reduction in irPR expression at parturition (22% of proestrous controls). Very few NTS neurons immunoreactive for tyrosine hydroxylase (irTH), and thus putatively noradrenergic, contained irPR. These findings taken with evidence that brainstem irTH neurons projecting to the SON are stimulated at parturition, whereas MPA cells projecting to the SON are not, suggest that any direct actions of progesterone or progesterone withdrawal on NTS or SON neurons are not mediated through the classical PR. Upregulation of PR expression in the MPA during pregnancy and parturition may relate to the onset of maternal behavior and/or regulation of GnRH neuronal activity.


Assuntos
Hipotálamo Anterior/metabolismo , Trabalho de Parto/metabolismo , Receptores de Progesterona/biossíntese , Núcleo Solitário/metabolismo , Animais , Especificidade de Anticorpos , Feminino , Hipotálamo Anterior/química , Masculino , Comportamento Materno/fisiologia , Núcleo Hipotalâmico Paraventricular/química , Núcleo Hipotalâmico Paraventricular/metabolismo , Gravidez , Área Pré-Óptica/química , Área Pré-Óptica/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Progesterona/análise , Receptores de Progesterona/imunologia , Núcleo Solitário/química , Tirosina 3-Mono-Oxigenase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...