Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 329: 121757, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286538

RESUMO

A shear-thickening polysaccharide from the New Zealand Black tree fern (Cyathea medullaris, commonly known as mamaku) extracted from different age fronds (stage 1: young, stage 2: fully grown and stage 3: old) was characterised in terms of structure and rheological properties. Constituent sugar analysis and 1H and 13C NMR revealed a repeating backbone of -4)-ß-D-GlcpA-(1 â†’ 2)-α-D-Manp-(1→, for all mamaku polysaccharide (MP) samples from different age fronds without any alterations in molecular structure. However, the molecular weight (Mw) was reduced with increasing age, from ~4.1 × 106 to ~2.1 × 106 Da from stage 1 to stage 3, respectively. This decrease in Mw (and size) consequently reduced the shear viscosity (ηs-Stage 1 > Î·s-Stage 2 > Î·s-Stage 3). However, the extent of shear-thickening and uniaxial extensional viscosity of MP stage 2 was greater than MP stage 1, which was attributed to a greater intermolecular interaction occurring in the former. Shear-thickening behaviour was not observed in MP stage 3.

2.
Food Funct ; 14(15): 7024-7039, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37439088

RESUMO

Mamaku is a fern indigenous to the Pacific Islands with a long history of use for therapeutic benefits such as to combat skin conditions and manage gastrointestinal discomfort; however, the scientific understanding is limited. In this study, we examined the effect of mamaku gum, extracted from different age fronds of the New Zealand Black tree fern (Cyathea medullaris, Mamaku) (stage 1: young, stage 2: fully grown and stage 3: old), on gut function using in vitro models of static digestion, enzyme activity and static colonic fermentation. Under simulated gastric and small intestinal conditions, mamaku polysaccharide (MP) was indigestible as there was no decrease in the molecular weight (Mw) of the polymer. Mamaku gum could reduce the activity of digestive enzymes (α-amylase, pepsin and lipase) in a concentration-dependent manner, with the stage 1 sample showing the highest inhibition and stage 3 the lowest. All three mamaku gum samples could also equally bind bile acids during intestinal digestion. During fermentation, human faecal microbiota utilised the mamaku gum and significantly increased the production of total short-chain fatty acids (SCFAs) and reduced the pH when compared with the blank. However, changes in SCFAs and pH for mamaku groups were less prominent than for inulin and guar gum control groups, suggesting lower fermentability of mamaku gum compared to the latter two. Furthermore, mamaku gum altered the composition of colonic microbiota, specifically reducing the ratio of Firmicutes to Bacteroidetes and increasing the relative abundance of Bacteroides, Enterococcus, Paraprevotella and Parabacteroides genera. No obvious difference between mamaku gum samples from stage 1, 2 and 3 was observed during fermentation. Collectively, these results suggest that mamaku gum may modulate the functionality of the host gut by reducing enzyme activity, binding bile acids, altering the colonic microbial composition and producing SCFAs.


Assuntos
Ácidos Graxos Voláteis , Microbiota , Humanos , Animais , Coelhos , Fermentação , Ácidos Graxos Voláteis/metabolismo , Digestão , Colo/metabolismo , Ácidos e Sais Biliares/metabolismo
3.
Nutrients ; 12(9)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899726

RESUMO

The anti-inflammatory effects of curcumin are well documented. However, the bioavailability of curcumin is a major barrier to its biological efficacy. Low-dose combination of complimentary bioactives appears to be an attractive strategy for limiting barriers to efficacy of bioactive compounds. In this study, the anti-inflammatory potential of curcumin in combination with chlorogenic acid (CGA), was investigated using human THP-1 macrophages stimulated with lipopolysaccharide (LPS). Curcumin alone suppressed TNF-α production in a dose-dependent manner with a decrease in cell viability at higher doses. Although treatment with CGA alone had no effect on TNF-α production, it however enhanced cell viability and co-administration with curcumin at a 1:1 ratio caused a synergistic reduction in TNF-α production with no impact on cell viability. Furthermore, an qRT-PCR analysis of NF-κB pathway components and inflammatory biomarkers indicated that CGA alone was not effective in reducing the mRNA expression of any of the tested inflammatory marker genes, except TLR-4. However, co-administration of CGA with curcumin, potentiated the anti-inflammatory effects of curcumin. Curcumin and CGA together reduced the mRNA expression of pro-inflammatory cytokines [TNF-α (~88%) and IL-6 (~99%)], and COX-2 (~92%), possibly by suppression of NF-κB (~78%), IκB-ß-kinase (~60%) and TLR-4 receptor (~72%) at the mRNA level. Overall, co-administration with CGA improved the inflammation-lowering effects of curcumin in THP-1 cells.


Assuntos
Anti-Inflamatórios/farmacocinética , Ácido Clorogênico/farmacocinética , Curcumina/farmacocinética , Disponibilidade Biológica , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Quimioterapia Combinada , Humanos , Quinase I-kappa B/metabolismo , Inflamação , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , RNA Mensageiro/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células THP-1/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...